Last active
September 1, 2015 05:35
-
-
Save rajabishek/6bbbe2190585d0cf1c64 to your computer and use it in GitHub Desktop.
Prim's Algorithm - Minimum Spanning Tree
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #include<iostream> | |
| #include<stack> | |
| using namespace std; | |
| class Graph{ | |
| int nodes; //No of nodes in the graph | |
| int **A; //A is the adjacency matrix => the graph datastructure | |
| public: | |
| Graph(int nodes){ | |
| this->nodes = nodes; | |
| A = new int*[nodes]; | |
| for(int i=0;i<nodes;++i){ | |
| A[i] = new int[nodes]; | |
| } | |
| for(int i=0;i<nodes;++i) | |
| for(int j=0;j<nodes;++j){ | |
| A[i][j] = 0; | |
| } | |
| } | |
| void printAdjacencyMatrix(){ | |
| for(int i=0;i<nodes;++i){ | |
| for(int j=0;j<nodes;++j){ | |
| cout<<A[i][j]<<" "; | |
| } | |
| cout<<endl; | |
| } | |
| } | |
| bool isConnected(int node1,int node2){ | |
| return A[node1-1][node2 - 1] != 0; | |
| } | |
| int getWeight(int node1,int node2){ | |
| return A[node1-1][node2 - 1]; | |
| } | |
| void addEdge(int node1,int node2,int weight){ | |
| A[node1-1][node2 - 1] = A[node2-1][node1-1] = weight; | |
| } | |
| int findMinimumEdgeFromVisitedVertices(bool* visited){ | |
| int minWeight = 100; | |
| int minNode = 100; | |
| int workingNode = 100; | |
| for(int i=1;i<=nodes;++i){ | |
| if(visited[i] == true){ | |
| for (int j=1; j<=nodes; ++j){ | |
| if(visited[j] == false && isConnected(j,i)){ | |
| if(getWeight(j,i) < minWeight){ | |
| minWeight = getWeight(j,i); | |
| workingNode = i; | |
| minNode = j; | |
| } | |
| } | |
| } | |
| } | |
| } | |
| visited[minNode] = true; | |
| cout<<minNode<<" <--> "<<workingNode<<" ("<<minWeight<<") "<<endl; | |
| } | |
| //Without loss of generality, lets start with the first node | |
| void findMinimumSpanningTree(int node){ | |
| bool *visited = new bool[nodes+1]; | |
| for(int i=0;i<=nodes;++i) | |
| visited[i] = false; | |
| visited[node] = true; | |
| int n = nodes; | |
| cout<<"Minimum spanning tree:"<<endl; | |
| while(--n){ | |
| findMinimumEdgeFromVisitedVertices(visited); | |
| } | |
| } | |
| ~Graph(){ | |
| for (int i = 0; i < nodes; ++i) | |
| delete [] A[i]; | |
| delete [] A; | |
| } | |
| }; | |
| int main(){ | |
| Graph g(6); | |
| g.addEdge(1,2,6); | |
| g.addEdge(1,4,5); | |
| g.addEdge(1,3,1); | |
| g.addEdge(2,3,5); | |
| g.addEdge(3,4,5); | |
| g.addEdge(2,5,3); | |
| g.addEdge(4,6,2); | |
| g.addEdge(3,5,6); | |
| g.addEdge(3,6,4); | |
| g.addEdge(5,6,6); | |
| g.findMinimumSpanningTree(1); | |
| return 0; | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Its O(n^3). Does it make sense? Prim's is O(mlogn)!