Last active
August 29, 2015 14:08
-
-
Save rajabishek/7a048aeb6c02a24be141 to your computer and use it in GitHub Desktop.
Kruskal's Algorithm - Minimum Spanning Tree
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #include<iostream> | |
| #include<stack> | |
| using namespace std; | |
| class Graph{ | |
| int nodes; //No of nodes in the graph | |
| int **A; //A is the adjacency matrix => the graph datastructure | |
| int **B; | |
| public: | |
| Graph(int nodes){ | |
| this->nodes = nodes; | |
| A = new int*[nodes]; | |
| B = new int*[nodes]; | |
| for(int i=0;i<nodes;++i){ | |
| A[i] = new int[nodes]; | |
| B[i] = new int[nodes]; | |
| } | |
| for(int i=0;i<nodes;++i) | |
| for(int j=0;j<nodes;++j){ | |
| A[i][j] = 0; | |
| B[i][j] = 0; | |
| } | |
| } | |
| void printAdjacencyMatrix(){ | |
| for(int i=0;i<nodes;++i){ | |
| for(int j=0;j<nodes;++j){ | |
| cout<<A[i][j]<<" "; | |
| } | |
| cout<<endl; | |
| } | |
| } | |
| void printEdgeMatrix(){ | |
| for(int i=0;i<nodes;++i){ | |
| for(int j=0;j<nodes;++j){ | |
| cout<<B[i][j]<<" "; | |
| } | |
| cout<<endl; | |
| } | |
| } | |
| bool isAdjacent(int node1,int node2){ | |
| return B[node1-1][node2 - 1] != 0; | |
| } | |
| int getWeight(int node1,int node2){ | |
| return A[node1-1][node2 - 1]; | |
| } | |
| void addEdge(int node1,int node2,int weight){ | |
| A[node1-1][node2 - 1] = A[node2-1][node1-1] = weight; | |
| } | |
| void formEdgeBetween(int node1,int node2){ | |
| B[node1-1][node2-1] = B[node2-1][node1-1] = 1; | |
| } | |
| bool isEdgeChosenBetween(int node1,int node2){ | |
| return B[node1-1][node2-1]; | |
| } | |
| bool depthFirstSearch(int node1,int node2){ | |
| stack<int> s; | |
| bool hasAdjacent = false; | |
| bool *visited = new bool[nodes+1]; | |
| for(int i=0;i<=nodes;++i) | |
| visited[i] = false; | |
| s.push(node1); | |
| visited[node1] = true; | |
| while(!s.empty()){ | |
| int topNode = s.top(); | |
| hasAdjacent = false; | |
| for(int i=1;i<=nodes;++i){ | |
| if(isAdjacent(topNode,i) && visited[i] == false){ | |
| hasAdjacent = true; | |
| if(i == node2) | |
| return true; | |
| s.push(i); | |
| visited[i]= true; | |
| //cout<<i<<" "; | |
| break; | |
| } | |
| } | |
| if(!hasAdjacent) | |
| s.pop(); | |
| } | |
| delete [] visited; | |
| return false; | |
| } | |
| bool isConnected(int node1,int node2){ | |
| return depthFirstSearch(node1,node2); | |
| } | |
| //gets the edge having the minimum weight | |
| void getMinimumEdge(){ | |
| int minWeight = 100; | |
| int minNode1 = 100; | |
| int minNode2 = 100; | |
| for(int i=0;i<nodes;++i){ | |
| for(int j=0;j<nodes;++j){ | |
| if(A[i][j]!=0 && A[i][j]<minWeight && !isEdgeChosenBetween(i+1,j+1) && !isConnected(i+1,j+1)){ | |
| minWeight = A[i][j]; | |
| minNode1 = i+1; | |
| minNode2 = j+1; | |
| } | |
| } | |
| } | |
| formEdgeBetween(minNode1,minNode2); | |
| cout<<minNode1<<" <--> "<<minNode2<<" ("<<minWeight<<") "<<endl; | |
| } | |
| //Without loss of generality, lets start with the first node | |
| void findMinimumSpanningTree(){ | |
| bool hasAdjacent = false; | |
| bool *visited = new bool[nodes+1]; | |
| for(int i=0;i<=nodes;++i) | |
| visited[i] = false; | |
| int n = nodes; | |
| cout<<""; | |
| cout<<"Minimum spanning tree:"<<endl; | |
| while(--n){ | |
| getMinimumEdge(); | |
| } | |
| } | |
| ~Graph(){ | |
| for (int i = 0; i < nodes; ++i) | |
| delete [] A[i]; | |
| delete [] A; | |
| } | |
| }; | |
| int main(){ | |
| Graph g(6); | |
| g.addEdge(1,2,6); | |
| g.addEdge(1,4,5); | |
| g.addEdge(1,3,1); | |
| g.addEdge(2,3,5); | |
| g.addEdge(3,4,5); | |
| g.addEdge(2,5,3); | |
| g.addEdge(4,6,2); | |
| g.addEdge(3,5,6); | |
| g.addEdge(3,6,4); | |
| g.addEdge(5,6,6); | |
| g.findMinimumSpanningTree(); | |
| return 0; | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment