Created
June 6, 2016 22:19
-
-
Save rajarsheem/d45259ce3f8e4c226846d2f31bf719f5 to your computer and use it in GitHub Desktop.
Newton's optimization method for multivariate function in tensorflow
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import tensorflow as tf | |
# Newton's optimization method for multivariate function in tensorflow | |
def cons(x): | |
return tf.constant(x, dtype=tf.float32) | |
def compute_hessian(fn, vars): | |
mat = [] | |
for v1 in vars: | |
temp = [] | |
for v2 in vars: | |
temp.append(tf.gradients(tf.gradients(fn, v2)[0], v1)[0]) | |
temp = [cons(0) if t == None else t for t in temp] | |
temp = tf.pack(temp) | |
mat.append(temp) | |
mat = tf.pack(mat) | |
return mat | |
def compute_grads(fn, vars): | |
grads = [] | |
for v in vars: | |
grads.append(tf.gradients(fn, v)[0]) | |
return tf.reshape(tf.pack(grads), shape=[2, -1]) | |
def optimize(all_variables, update): | |
optmize_variables = [] | |
for i in range(len(all_variables)): | |
optmize_variables.append(all_variables[i].assign(all_variables[i] - alpha * tf.squeeze(update[i]))) | |
return tf.pack(optmize_variables) | |
x = tf.Variable(np.random.random_sample(), dtype=tf.float32) | |
y = tf.Variable(np.random.random_sample(), dtype=tf.float32) | |
alpha = cons(0.1) | |
# f = tf.pow(x, cons(2)) + cons(2) * x * y + cons(3) * tf.pow(y, cons(2)) + cons(4) * x + cons(5) * y + cons(6) | |
f = cons(0.5) * tf.pow(x, 2) + cons(2.5) * tf.pow(y, 2) | |
all_variables = [x, y] | |
hessian = compute_hessian(f, all_variables) | |
hessian_inv = tf.matrix_inverse(hessian) | |
g = compute_grads(f, all_variables) | |
update = tf.unpack(tf.matmul(hessian_inv, g)) | |
optimize_op = optimize(all_variables, update) | |
sess = tf.Session() | |
sess.run(tf.initialize_all_variables()) | |
func = np.inf | |
for i in range(10): | |
prev = func | |
v1, v2, func = sess.run([x, y, f]) | |
print v1, v2, func | |
sess.run(optimize_op) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment