Created
March 1, 2016 18:34
-
-
Save rajarsheem/ef4cc5e4e98f2923015e to your computer and use it in GitHub Desktop.
Multi layer perceptron example using Theano
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# MLP using theano | |
import numpy as np | |
import theano | |
import theano.tensor as T | |
from sklearn.datasets import load_iris | |
iris = load_iris() | |
train_x = iris.data | |
train_y = iris.target | |
nn_input_dim = train_x.shape[1] | |
nn_hdim = 6 | |
epsilon = 0.01 | |
batch_size = 30 | |
nn_output_dim = len(iris.target_names) | |
x = T.matrix('x') | |
y = T.lvector('y') | |
W1 = theano.shared(np.random.randn(nn_input_dim, nn_hdim), name='W1') | |
b1 = theano.shared(np.zeros(nn_hdim), name='b1') | |
W2 = theano.shared(np.random.randn(nn_hdim, nn_output_dim), name='W2') | |
b2 = theano.shared(np.zeros(nn_output_dim), name='b2') | |
z1 = x.dot(W1) + b1 | |
a1 = T.nnet.softmax(z1) | |
z2 = a1.dot(W2) + b2 | |
a2 = T.nnet.softmax(z2) | |
loss = T.nnet.categorical_crossentropy(a2, y).mean() | |
prediction = T.argmax(a2, axis=1) | |
forward_prop = theano.function([x], a2) | |
calculate_loss = theano.function([x, y], loss) | |
predict = theano.function([x], prediction) | |
accuracy = theano.function([x], T.sum(T.eq(prediction, train_y))) | |
dW2 = T.grad(loss, W2) | |
db2 = T.grad(loss, b2) | |
dW1 = T.grad(loss, W1) | |
db1 = T.grad(loss, b1) | |
gradient_step = theano.function( | |
[x, y], | |
updates=((W2, W2 - epsilon * dW2), | |
(W1, W1 - epsilon * dW1), | |
(b2, b2 - epsilon * db2), | |
(b1, b1 - epsilon * db1))) | |
def build_model(num_passes=50000): | |
np.random.seed(0) | |
W1.set_value(np.random.randn(nn_input_dim, nn_hdim) / np.sqrt(nn_input_dim)) | |
b1.set_value(np.zeros(nn_hdim)) | |
W2.set_value(np.random.randn(nn_hdim, nn_output_dim) / np.sqrt(nn_hdim)) | |
b2.set_value(np.zeros(nn_output_dim)) | |
for i in range(0, num_passes): | |
batch_indices = np.random.randint(150,size=30) | |
batch_x, batch_y = train_x[batch_indices], train_y[batch_indices] | |
gradient_step(batch_x, batch_y) | |
if i % 1000 == 0: | |
print("Loss after iteration {0}: {1}".format(i, calculate_loss(train_x, train_y))) | |
print(accuracy(train_x)) | |
build_model() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Sir when i executed this program i am getting accuracy as 147 what does it mean.How you classified the data, can you please explain