Last active
November 13, 2024 07:42
-
-
Save rajvermacas/3f0b897c151854560db2865b64217efb to your computer and use it in GitHub Desktop.
Scala spark json file
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import org.apache.spark.sql.{Row, SparkSession} | |
import org.apache.spark.sql.functions._ | |
import org.apache.spark.sql.types._ | |
object ScalaListEquivalents { | |
def main(args: Array[String]): Unit = { | |
// Initialize Spark session | |
val spark = SparkSession.builder | |
.appName("CSV Loader") | |
.config("spark.master", "local") | |
.config("spark.driver.host", "localhost") | |
.getOrCreate() | |
import spark.implicits._ | |
// Sample DataFrame with JSON strings | |
val jsonData = Seq( | |
"""{"process_details": [{"field1": "value1", "field2": 2}, {"field1": "value2", "field2": 3}]}""", | |
"""{"process_details": [{"field1": "value3", "field2": 4}, {"field1": "value4", "field2": 5}]}""" | |
).toDF("process_details") | |
// Define the schema for the JSON array within process_details | |
val processDetailsSchema = ArrayType(StructType(Array( | |
StructField("field1", StringType, true), | |
StructField("field2", IntegerType, true) | |
))) | |
// Parse the JSON column from string to structured format | |
val parsedJsonDF = jsonData | |
.withColumn("process_details", from_json(col("process_details"), StructType(Seq( | |
StructField("process_details", processDetailsSchema, true) | |
)))) | |
.select(col("process_details.*")) // Flatten the top-level structure | |
// Show the parsed DataFrame | |
parsedJsonDF.show(false) | |
parsedJsonDF.printSchema() | |
// Define the schema, same as parsedJsonDF's schema | |
val schema = parsedJsonDF.schema | |
// Define a new row to append | |
val newRow = Row(Seq( | |
Row("newValue1", 6), // First item in the array | |
Row("newValue2", 7) // Second item in the array | |
)) | |
// Create a DataFrame with the new row | |
val newDF = spark.createDataFrame(spark.sparkContext.parallelize(Seq(newRow)), schema) | |
// Append the new row to parsedJsonDF | |
val updatedDF = parsedJsonDF.union(newDF) | |
// Show the updated DataFrame | |
updatedDF.show(false) | |
} | |
} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment