I hereby claim:
- I am ramhiser on github.
- I am ramhiser (https://keybase.io/ramhiser) on keybase.
- I have a public key ASBotXs-LlQCC_m4Y3nVJlvF-fOMjq9idZtoXkYd-jekzQo
To claim this, I am signing this object:
I hereby claim:
To claim this, I am signing this object:
# Based on this blog post: http://nowave.it/pages/bayesian-changepoint-detection-with-r-and-stan.html | |
library(rstan) | |
rstan_options(auto_write = TRUE) | |
set.seed(42) | |
beta0 <- 3 | |
beta1 <- 9 | |
beta2 <- 15 | |
set.seed(42) |
import json | |
def fullname(o): | |
return o.__module__ + "." + o.__class__.__name__ | |
def export_pipeline(scikit_pipeline): | |
"""JSON export of a scikit-learn pipeline. | |
Especially useful when paired with GridSearchCV, TPOT, etc. | |
from scipy import stats | |
import numpy as np | |
def mean_confidence_interval(x, alpha=0.05): | |
"""Computes two-sided confidence interval for a Normal mean | |
Assumes population variance is unknown. | |
x is assumed to be a list or a 1-d Numpy array | |
""" |
# The data set and model are described in the *brms* vignette | |
library(brms) | |
url <- paste0("https://raw.githubusercontent.com/mages/diesunddas/master/Data/ClarkTriangle.csv") | |
loss <- read.csv(url) | |
set.seed(42) | |
# Generated a random continuous feature | |
loss$ramey <- runif(nrow(loss)) |
library(tidyverse) | |
library(randomForest) | |
library(rpart) | |
set.seed(42) | |
num_points <- 20 | |
x <- sort(runif(num_points, min=-5, max=6)) | |
y <- x^2/5 + sin(3*x) # + rnorm(num_points, sd=0.1) | |
df <- data_frame(x=x, y=y) |
# The Dogs data set was analyzed by D.V. Lindley using a loglinear model for binary data | |
# For details about the Dogs data set and model, see: http://www.openbugs.net/Examples/Dogs.html | |
library(rstan) | |
rstan_options(auto_write = TRUE) | |
options(mc.cores = parallel::detectCores()) | |
num_dogs <- 30 | |
num_trials <- 25 | |
Y <- structure(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
library(dplyr) | |
iris_char <- iris %>% | |
mutate(Species=as.character(Species), | |
char_column=sample(letters[1:5], nrow(iris), replace=TRUE)) | |
sum(sapply(iris_char, is.character)) # 2 | |
iris_factor <- iris_char %>% | |
mutate_if(sapply(iris_char, is.character), as.factor) | |
# Sepal.Length Sepal.Width Petal.Length Petal.Width Species char_column | |
# "numeric" "numeric" "numeric" "numeric" "character" "character" |
# Uses a subset of the Iris data set with different proportions of the Species factor | |
set.seed(42) | |
iris_subset <- iris[c(1:50, 51:80, 101:120), ] | |
stratified_sample <- iris_subset %>% | |
group_by(Species) %>% | |
mutate(num_rows=n()) %>% | |
sample_frac(0.4, weight=num_rows) %>% | |
ungroup |
library(dplyr) | |
library(ggplot2) | |
A <- seq(0, 10, length=100) | |
F <- seq(0, 10, length=100) | |
symmetric_mape <- function(A, F) { | |
abs(F - A) / (abs(A) + abs(F)) | |
} |