Skip to content

Instantly share code, notes, and snippets.

@rampion
Last active January 16, 2020 10:35
Show Gist options
  • Save rampion/9977b841456599d8503bab542d24ea12 to your computer and use it in GitHub Desktop.
Save rampion/9977b841456599d8503bab542d24ea12 to your computer and use it in GitHub Desktop.
Showing how to generalize PMoney and SMoney using dependent types and singletons, follow up to https://twitter.com/alexnixon_uk/status/1217446321348661248?s=20
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE QuantifiedConstraints #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ViewPatterns #-}
module Money where
import Control.Applicative (liftA3)
import Control.Arrow ((&&&))
import Data.Function (on)
import Data.Functor ((<&>))
import Data.Functor.Compose (Compose(..))
import Data.Functor.Identity (Identity(..))
import Data.Functor.Product (Product(..))
import Data.Map (Map)
import qualified Data.Map as Map
import Data.Proxy (Proxy(..))
{-
One way to generalize this is to use dependant types.
First we'll need a way to encode dependent sum
and product types in Haskell.
-}
-- dependent sum type: |Σ k a| = |a x₀| + |a x₁| + … + |a xₙ| for xₜ ∈ k
data Σ k a where
Inj :: Sing k x -> a x -> Σ k a
one :: Functor f => (forall x. Sing k x -> a x -> f (b x)) -> Σ k a -> f (Σ k b)
one f (Inj sx ax) = Inj sx <$> f sx ax
-- dependent product type: |Π k a| = |a x₀| * |a x₁| * … * |a xₙ| for xₜ ∈ k
newtype Π k (a :: k -> *) = Exp { runExp :: forall (x :: k). Sing k x -> a x }
proj :: Sing k x -> Π k a -> a x
proj = flip runExp
class Algebraic k where
data Sing k :: k -> *
every :: Applicative f => (forall x. Sing k x -> a x -> f (b x)) -> Π k a -> f (Π k b)
lens :: Functor f => Sing k x -> (a x -> f (a x)) -> Π k a -> f (Π k a)
-- we define currency as normal
data Currency = USD | GBP | JPY
instance Algebraic Currency where
data Sing Currency x where
SUSD :: Sing Currency USD
SGBP :: Sing Currency GBP
SJPY :: Sing Currency JPY
every = \f (Exp g) -> liftA3 ΠCurrency (f SUSD $ g SUSD) (f SGBP $ g SGBP) (f SJPY $ g SJPY) where
lens SUSD f (Exp g) = f (g SUSD) <&> \dollars -> ΠCurrency dollars (g SGBP) (g SJPY)
lens SGBP f (Exp g) = f (g SGBP) <&> \pounds -> ΠCurrency (g SUSD) pounds (g SJPY)
lens SJPY f (Exp g) = f (g SJPY) <&> \yen -> ΠCurrency (g SUSD) (g SGBP) yen
-- we can define pattern synonyms (pseudo-constructors) for creating/matching Σ Currency a values:
pattern Dollars :: a USD -> Σ Currency a
pattern Dollars m = Inj SUSD m
pattern Pounds :: a GBP -> Σ Currency a
pattern Pounds m = Inj SGBP m
pattern Yen :: a JPY -> Σ Currency a
pattern Yen m = Inj SJPY m
{-# COMPLETE Dollars, Pounds, Yen #-}
-- and a pattern synonym for creating/matching Π Currency a values
pattern ΠCurrency :: a USD -> a GBP -> a JPY -> Π Currency a
pattern ΠCurrency { dollars, pounds, yen } <- (proj SUSD &&& proj SGBP &&& proj SJPY -> (dollars, (pounds, yen)))
where ΠCurrency dollars pounds yen = Exp $ \case
SUSD -> dollars
SGBP -> pounds
SJPY -> yen
{-# COMPLETE ΠCurrency #-}
newtype Money (c :: Currency) = Money { unMoney :: Rational }
{-
Σ Currency Money is isomorphic to
data SMoney
= Dollars (Money USD)
| Pounds (Money GBP)
| Yen (Money JPY)
Π Currency Money is isomorphic to
data PMoney = PMoney
{ pounds :: Money GBP
, dollars :: Money USD
, yen :: Money JPY
}
-}
{-
> For example, say you want to represent a well-typed map where the keys are a
> "Trade" and the values "Money", and the currency is statically proven to be the
> same.
We'll need a well-typed map
-}
newtype Map1 key val x = Map1 { getMap1 :: Map (key x) (val x) }
type PMap (key :: k -> *) (val :: k -> *) = Π k (Map1 key val)
empty :: PMap key val
empty = Exp $ \_ -> Map1 Map.empty
lookup :: Ord (key x) => Sing k x -> key x -> PMap key val -> Maybe (val x)
lookup sx kx = Map.lookup kx . getMap1 . proj sx
insert :: Algebraic k => Ord (key x) => Sing k x -> key x -> val x -> PMap key val -> PMap key val
insert sx kx vx = runIdentity . (lens sx $ Identity . Map1 . Map.insert kx vx . getMap1)
fromList :: (Algebraic k, forall x. Ord (key x)) => [Σ k (Product key val)] -> PMap key val
fromList = foldr (\(Inj sx (Pair kx vx)) -> insert sx kx vx) empty
type PList (a :: k -> *) = Π k (Compose [] a)
fromList' :: (Algebraic k, forall (x :: k). Ord (key x)) => PList (Product key val) -> PMap key val
fromList' = runIdentity . every (\_ -> Identity . Map1 . Map.fromList . fmap (\(Pair kx vx) -> (kx,vx)) . getCompose)
{-
Now creating a well typed trade map is easy:
-}
data Trade c = Trade
{ quantity :: Rational
, price :: Money c
, uuid :: String
}
instance Eq (Trade c) where
a == b = compare a b == EQ
instance Ord (Trade c) where
compare = compare `on` uuid
example :: PMap Trade Money -- ~ Π Currency (Map1 Trade Money)
example = fromList
[ Inj SUSD (Trade 3 (Money 1.25) "coke" `Pair` Money 43000)
, Inj SGBP (Trade 1 (Money 2.0) "tea" `Pair` Money 1588)
, Inj SUSD (Trade 4 (Money 11.5) "bagels" `Pair` Money 11.99)
, Inj SGBP (Trade 9 (Money 12.0) "crumpets" `Pair` Money 1e34)
, Inj SJPY (Trade 2 (Money 7.30) "nori" `Pair` Money 0)
]
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment