Last active
May 2, 2018 21:37
-
-
Save ramsesoriginal/7a80b439eebabab65447d487eb7fd81c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def test(): | |
class Node(object): | |
def __init__(self, name, *successors): | |
self.successors = list(successors) | |
self.name = name | |
self.color = "white" | |
def __repr__(self): | |
return self.name + "(" + self.color + ")" | |
def reset(g): | |
for n in g: | |
n.color = "white" | |
n1 = Node("C3ab") | |
n2 = Node("C2a", n1) | |
n3 = Node("C1b", n1) | |
n4 = Node("C2a", n2) | |
n5 = Node("C1a", n4, n2) | |
n6 = Node("B2") | |
n7 = Node("B1", n6) | |
n8 = Node("A1") | |
n9 = Node("D1", Node("D2", Node("D3", Node("D4", Node("D5", Node("D6", Node("D7"), Node("D7")))), Node("D4")))) | |
print("OK:") | |
G = [n7, n1,n2,n3,n8,n4,n5,n6] | |
reset(G) | |
print(G, topologische_sortierung(G)) | |
G = [] | |
reset(G) | |
print(G, topologische_sortierung(G)) | |
G = [n1] | |
reset(G) | |
print(G, topologische_sortierung(G)) | |
G = [n1, n6, n8] | |
reset(G) | |
print(G, topologische_sortierung(G)) | |
G = [n6, n7] | |
reset(G) | |
print(G, topologische_sortierung(G)) | |
G = [n6, n6] | |
reset(G) | |
print(G, topologische_sortierung(G)) | |
#####LONG | |
''' | |
G= [] | |
multistart = Node("start") | |
end = Node("end") | |
for i in range(10000): | |
G.append(Node(str(i),end)) | |
if i%7==0: | |
multistart.successors.append(G[i]) | |
for j in range (i//2, i-1): | |
if (i-j)%11 == 0: | |
G[j].successors.append(G[i]) | |
G.append(multistart) | |
print(G, topologische_sortierung(G)) | |
''' | |
print("Nicht Ok:") | |
n1.successors.append(n2) | |
G = [n1, n2] | |
reset(G) | |
print(G, topologische_sortierung(G)) | |
G = [n4, n1, n2] | |
reset(G) | |
print(G, topologische_sortierung(G)) | |
G = [n1, n2, n4] | |
reset(G) | |
print(G, topologische_sortierung(G)) | |
n8.successors.append(n8) | |
G = [n8] | |
reset(G) | |
print(G, topologische_sortierung(G)) | |
G = [n8,n8] | |
reset(G) | |
print(G, topologische_sortierung(G)) | |
d = Node("d") | |
b = Node("b") | |
c = Node("c", b) | |
b.successors.append(c) | |
a = Node("a") | |
a.successors.append(a) | |
G = [a, b, c, d] | |
print(G, topologische_sortierung(G)) | |
print("Nicht genau definiert...") | |
G = [n9] | |
reset(G) | |
print(G, topologische_sortierung(G)) | |
test() | |
] | |
reset(G) | |
print(G, topologische_sortierung(G)) | |
G = [] | |
reset(G) | |
print(G, topologische_sortierung(G)) | |
G = [n1] | |
reset(G) | |
print(G, topologische_sortierung(G)) | |
G = [n1, n6, n8] | |
reset(G) | |
print(G, topologische_sortierung(G)) | |
G = [n6, n7] | |
reset(G) | |
print(G, topologische_sortierung(G)) | |
G = [n6, n6] | |
reset(G) | |
print(G, topologische_sortierung(G)) | |
#####LONG | |
''' | |
G= [] | |
multistart = Node("start") | |
end = Node("end") | |
for i in range(10000): | |
G.append(Node(str(i),end)) | |
if i%7==0: | |
multistart.successors.append(G[i]) | |
for j in range (i//2, i-1): | |
if (i-j)%11 == 0: | |
G[j].successors.append(G[i]) | |
G.append(multistart) | |
print(G, topologische_sortierung(G)) | |
''' | |
print("Nicht Ok:") | |
n1.successors.append(n2) | |
G = [n1, n2] | |
reset(G) | |
print(G, topologische_sortierung(G)) | |
G = [n4, n1, n2] | |
reset(G) | |
print(G, topologische_sortierung(G)) | |
G = [n1, n2, n4] | |
reset(G) | |
print(G, topologische_sortierung(G)) | |
n8.successors.append(n8) | |
G = [n8] | |
reset(G) | |
print(G, topologische_sortierung(G)) | |
G = [n8,n8] | |
reset(G) | |
print(G, topologische_sortierung(G)) | |
print("Nicht genau definiert...") | |
G = [n9] | |
reset(G) | |
print(G, topologische_sortierung(G)) | |
d = Node("d") | |
b = Node("b") | |
c = Node("c", b) | |
b.successors.append(c) | |
a = Node("a") | |
a.successors.append(a) | |
G = [a, b, c, d] | |
print(G, topologische_sortierung(G)) | |
test() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment