Skip to content

Instantly share code, notes, and snippets.

@ranchodeluxe
Last active November 19, 2024 18:15
Show Gist options
  • Save ranchodeluxe/b33ec007134816b9f26a76a5bf98afc5 to your computer and use it in GitHub Desktop.
Save ranchodeluxe/b33ec007134816b9f26a76a5bf98afc5 to your computer and use it in GitHub Desktop.
from postal.expand import expand_address
import sys
import xxhash
import math
import pprint
import pandas as pd
from sqlalchemy import create_engine, text
from datetime import datetime, timedelta
DATABASE_URI = "postgresql://kaiizenadmin:[email protected]/kaiizen"
engine = create_engine(DATABASE_URI)
def meters_to_degrees(meters, latitude):
meters_per_degree_lat = 111320
latitude_degrees = meters / meters_per_degree_lat
meters_per_degree_lon = 111320 * math.cos(math.radians(latitude))
longitude_degrees = meters / meters_per_degree_lon
return {
"latitude_degrees": latitude_degrees,
"longitude_degrees": longitude_degrees,
}
def match_address_expansion(address):
expansions = expand_address(address)
expansion_hashes = [xxhash.xxh64(ex).intdigest() for ex in expansions]
query = """
SELECT *
FROM properties_address_expansions
WHERE expansion_hash = ANY(%(expansion_hashes)s)
"""
matches = pd.read_sql(query, engine, params={"expansion_hashes": expansion_hashes})
return matches
def get_subject_properties_raw(address_expansions):
"""
:param address_expansions:
:return:
"""
if address_expansions.loc[0].dwellsy_pk is None:
query = """
SELECT
DISTINCT(pae.cherre_pk),
ps.pk AS cherre_pk,
ps.addr AS properties_addr,
ps.addr_city AS properties_city,
ps.addr_state AS properties_state,
ps.addr_zip AS properties_zip,
ps.last_sale_price
FROM
properties_address_expansions pae
LEFT JOIN
properties_simple ps ON pae.cherre_pk = ps.pk
WHERE
pae.cherre_pk = %(cherre_pk)s
"""
comps = pd.read_sql(
query,
engine,
params={"cherre_pk": int(address_expansions.loc[0].cherre_pk)},
)
else:
query = """
SELECT
DISTINCT(pae.cherre_pk),
ps.pk AS cherre_pk,
ps.addr AS properties_addr,
ps.addr_city AS properties_city,
ps.addr_state AS properties_state,
ps.addr_zip AS properties_zip,
ps.last_sale_price,
ls.pk AS dwellsy_pk,
# ls.addr AS listings_addr,
# ls.addr_city AS listings_city,
# ls.addr_state AS listings_state,
# ls.addr_zip AS listings_zip,
ls.listing_amount,
ls.listing_deposit
FROM
properties_address_expansions pae
LEFT JOIN
properties_simple ps ON pae.cherre_pk = ps.pk
LEFT JOIN
listings_simple ls ON pae.dwellsy_pk = ls.pk
WHERE
pae.dwellsy_pk = %(dwellsy_pk)s AND
pae.cherre_pk = %(cherre_pk)s
"""
comps = pd.read_sql(
query,
engine,
params={
"dwellsy_pk": int(address_expansions.loc[0].dwellsy_pk),
"cherre_pk": int(address_expansions.loc[0].cherre_pk),
},
)
return comps
def find_comparables(dw_id: int, get_rental_rates=False):
""" """
with engine.connect() as connection:
# 1. get subject property from PropDB
subject_query = text(
"""
SELECT
pk,
last_sale_price,
last_sale_date,
bed_count,
bath_count,
year_built,
sqft_building,
addr_city,
msa_name,
ST_X(coords) AS longitude,
ST_Y(coords) AS latitude
FROM properties_simple
WHERE pk = :dw_id
"""
)
subject_property = pd.read_sql(
subject_query, connection, params={"dw_id": str(dw_id)}
).iloc[0]
print(f"[ SUBJECT PROPERTY ]")
print(
subject_property[
[
"last_sale_price",
"last_sale_date",
"bed_count",
"bath_count",
"year_built",
"sqft_building",
]
]
)
# 2. filters set up etc
is_rural = is_rural_area(
subject_property["addr_city"], subject_property["msa_name"]
)
proximity_distance_meters = 5 * 1609.34 if is_rural else 1 * 1609.34
proximity_distance_degrees = meters_to_degrees(
proximity_distance_meters, subject_property.latitude
)
min_sale_price = subject_property["last_sale_price"] * 0.75
max_sale_price = subject_property["last_sale_price"] * 1.25
min_sale_date = datetime.now() - timedelta(days=360)
min_beds = (subject_property["bed_count"] or 1) - 1
max_beds = (subject_property["bed_count"] or 1) + 1
min_baths = (subject_property["bath_count"] or 1) - 1
max_baths = (subject_property["bath_count"] or 1) + 1
min_year_built = (subject_property["year_built"] or 1700) - 5
max_year_built = (subject_property["year_built"] or 1700) + 5
min_sqft = (subject_property["sqft_building"] or 0) - 300
max_sqft = (subject_property["sqft_building"] or 0) + 300
# 3. appply filters to find comparables in PropDB
#
# TODO: what we really want here to use all the above
# filters but we get zero comps with building sqft
#
# WHERE
# ps.last_sale_price BETWEEN :min_sale_price AND :max_sale_price
# AND ps.last_sale_date >= :min_sale_date
# AND ps.bed_count BETWEEN :min_beds AND :max_beds
# AND ps.bath_count BETWEEN :min_baths AND :max_baths
# AND ps.year_built BETWEEN :min_year_built AND :max_year_built
# AND ps.sqft_building BETWEEN :min_sqft AND :max_sqft
#
comparables_query = text(
"""
WITH filtered_properties AS (
SELECT *
FROM properties_simple
WHERE ST_DWithin(
coords,
ST_SetSRID(ST_MakePoint(:longitude, :latitude), 4326),
:proximity_distance_degrees
)
)
SELECT
ps.pk,
ps.addr,
ps.addr_city,
ps.addr_state,
ps.addr_zip,
ps.last_sale_price,
ps.last_sale_date,
ps.bed_count,
ps.bath_count,
ps.sqft_building,
ps.year_built,
ST_X(ps.coords) AS "longitude",
ST_Y(ps.coords) AS "latitude",
ST_DistanceSphere(
ps.coords,
ST_SetSRID(ST_MakePoint(:longitude, :latitude), 4326)
) / 1609.34 AS "distance_miles"
FROM filtered_properties ps
WHERE
ps.last_sale_price IS NOT NULL
AND ps.last_sale_date IS NOT NULL
AND ps.last_sale_price BETWEEN :min_sale_price AND :max_sale_price
AND ps.last_sale_date >= :min_sale_date
AND ps.bed_count BETWEEN :min_beds AND :max_beds
AND ps.bath_count BETWEEN :min_baths AND :max_baths
AND ps.year_built BETWEEN :min_year_built AND :max_year_built
AND ps.sqft_building BETWEEN :min_sqft AND :max_sqft
ORDER BY ps.pk, "distance_miles"
LIMIT 50;
"""
)
params = {
"longitude": subject_property["longitude"],
"latitude": subject_property["latitude"],
"min_sale_price": min_sale_price,
"max_sale_price": max_sale_price,
"min_sale_date": min_sale_date,
"min_beds": min_beds,
"max_beds": max_beds,
"min_baths": min_baths,
"max_baths": max_baths,
"min_year_built": min_year_built,
"max_year_built": max_year_built,
"min_sqft": min_sqft,
"max_sqft": max_sqft,
"proximity_distance_degrees": proximity_distance_degrees[
"latitude_degrees"
],
}
# pprint.pprint(params)
comparables = pd.read_sql(comparables_query, connection, params=params)
cherre_ids = comparables["pk"].tolist()
if not cherre_ids:
# raise ValueError("No comparables found for subject property")
return comparables
# 5. if there are comparables and we care about rental rates then return them
if not get_rental_rates:
return comparables
if get_rental_rates:
listings_query = text(
"""
SELECT DISTINCT ON (pae.cherre_pk)
pae.cherre_pk AS "cherreId",
ls.pk AS "dwellsyId",
ls.listing_amount AS "listingAmount",
ls.listing_deposit AS "listingDeposit"
FROM properties_address_expansions pae
INNER JOIN listings_simple ls ON pae.dwellsy_pk = ls.pk
WHERE pae.cherre_pk = ANY(:cherre_ids)
"""
)
listings = pd.read_sql(
listings_query, connection, params={"cherre_ids": cherre_ids}
)
# 6. Merge comparables with listings
merged_data = pd.merge(comparables, listings, how="left", on="cherreId")
return merged_data.to_dict(orient="records")
def is_rural_area(city_name: str, msa_name: str) -> bool:
"""
Determines if a given city is considered rural.
:param city_name: The name of the city.
:param msa_name: The name of the Metropolitan Statistical Area (MSA).
:return: True if rural, False otherwise.
"""
return msa_name is None
if __name__ == "__main__":
all_address = """4942 W Novak Way Laveen AZ 85339
1466 E Avenida Fresca Casa Grande AZ 85122
1609 Carter Rd. Decatur GA 30032
14875 Arrowhead Dr Yukon OK 73099
3430 Rocky Springs Ct Marietta GA 30062
2485 Hillside ave. Decatur GA 30032
1427 Beaverton Ave Cincinnati OH 45237
950 Sugar Meadow Dr Sugar Hill GA 30518
5114 Crestway Dr, La Porte TX 77571
10415 Gloria St Gibsonton FL 33534
2859 Alexandria Dr SW Atlanta GA 30331""".split(
"\n"
)
for addr in all_address:
print(f"############################")
print(f"[ ADDRESS ]: {addr.lstrip()}")
expansions = match_address_expansion(addr)
# print(expansions)
if expansions.empty:
continue
comps = find_comparables(expansions.loc[0].cherre_pk)
if comps.empty:
print(f"[ COMPS ]: 0")
continue
print(f"[ COMPS ]: {len(comps)}")
print(
comps[
[
"last_sale_price",
"last_sale_date",
"bed_count",
"bath_count",
"year_built",
"sqft_building",
"distance_miles",
]
]
)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment