Last active
February 23, 2024 04:59
-
-
Save ranfysvalle02/ea684e630346ef8bdb99433569b431f9 to your computer and use it in GitHub Desktop.
MongoDB + Fireworks
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
API_KEY = "API_KEY_HERE" | |
MODEL = "accounts/fireworks/models/mixtral-8x7b-instruct" | |
QUESTION = "What is MongoDB?" | |
MONGODB_URI = "mongodb+srv://<uri-goes-here>" | |
import openai | |
from pydantic import BaseModel | |
import json | |
class Result(BaseModel): | |
answer: str | |
client = openai.OpenAI( | |
base_url = "https://api.fireworks.ai/inference/v1", | |
api_key=API_KEY, | |
) | |
# WOW that was easy -- Where is MongoDB though? | |
import pymongo | |
from langchain.embeddings import GPT4AllEmbeddings | |
gpt4all_embd = GPT4AllEmbeddings() | |
mdb_client = pymongo.MongoClient(MONGODB_URI) | |
db = mdb_client["apollo-salesops"] | |
collection = db["irag"] | |
def recall( | |
text, n_docs=2, min_rel_score=0.25, chunk_max_length=1800, unique=True | |
): | |
response = collection.aggregate( | |
[ | |
{ | |
"$vectorSearch": { | |
"index": "default", | |
"queryVector": gpt4all_embd.embed_query(text), | |
"path": "embedding", | |
# "filter": {}, | |
"limit": 15, # Number (of type int only) of documents to return in the results. Value can't exceed the value of numCandidates. | |
"numCandidates": 50, # Number of nearest neighbors to use during the search. You can't specify a number less than the number of documents to return (limit). | |
} | |
}, | |
{"$addFields": {"score": {"$meta": "vectorSearchScore"}}}, | |
{"$match": {"score": {"$gte": min_rel_score}}}, | |
{"$project": {"score": 1, "_id": 0, "source": 1, "text": 1}}, | |
] | |
) | |
tmp_docs = [] | |
str_response = [] | |
# Interate over the results | |
for d in response: | |
if len(tmp_docs) == n_docs: | |
break | |
if unique and d["source"] in tmp_docs: | |
continue | |
tmp_docs.append(d["source"]) | |
str_response.append( | |
{ | |
"URL": d["source"], | |
"content": d["text"][:chunk_max_length], | |
"score": d["score"], | |
} | |
) | |
kb_output = ( | |
f"RAG Knowledgebase Results[{len(tmp_docs)}]:\n```{str(str_response)}```\n## \n```SOURCES: " | |
+ str(tmp_docs) | |
+ "```\n\n" | |
) | |
return (kb_output) | |
chat_completion = client.chat.completions.create( | |
model=MODEL, | |
response_format={"type": "json_object", "schema": Result.schema_json()}, | |
messages=[ | |
{ | |
"role": "user", | |
"content": f"Using this context: {recall(QUESTION)} \n\n Answer the following question: {QUESTION} [important]Reply just in one JSON.[/important]", | |
}, | |
], | |
) | |
print("QUESTION:"+QUESTION) | |
print("\n\n"+f"Using this context: {recall(QUESTION)} \n\n Answer the following question: {QUESTION} [important]Reply just in one JSON.[/important]") | |
print("\n\n") | |
print(json.loads(chat_completion.choices[0].message.content)['answer']) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment