Created
January 21, 2024 00:01
-
-
Save rasbt/4c32fac33a6641b1fb608718e2a51500 to your computer and use it in GitHub Desktop.
Transformer PyTorch Pseudo Code
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch.nn as nn | |
class Transformer(nn.Module): | |
def __init__(self, ...): | |
super().__init__() | |
... | |
self.encoder_layers = nn.ModuleList(...) | |
self.decoder_layers = nn.ModuleList(...) | |
... | |
def forward(self, x, y): | |
... | |
encoder_result = x | |
for layer in self.encoder_layers: | |
encoder_result = layer(encoder_result, x_mask) | |
decoder_result = y | |
for layer in self.decoder_layers: | |
decoder_result = layer(decoder_result, encoder_result, x_mask, y_mask) | |
output = ... | |
return output | |
loss = nn.CrossEntropyLoss(0) | |
optimizer = optim.AdamW(...) | |
for batch in data_loader: | |
optimizer.zero_grad() | |
output = transformer(x_data, y_data[:, :-1]) | |
loss = loss(...) | |
loss.backward() | |
optimizer.step() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment