Created
March 3, 2019 06:34
-
-
Save rasbt/ddfca34135d083b81549ff5f9e686e1b to your computer and use it in GitHub Desktop.
Speed comparison DataLoader vs in-memory
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torchvision import datasets | |
from torchvision import transforms | |
from torch.utils.data import DataLoader | |
if torch.cuda.is_available(): | |
torch.backends.cudnn.deterministic = True | |
# Device | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
print('Device:', device) | |
# Hyperparameters | |
random_seed = 1 | |
learning_rate = 0.001 | |
num_epochs = 50 | |
batch_size = 128 | |
# Architecture | |
num_features = 784 | |
num_classes = 10 | |
train_dataset = datasets.CIFAR10(root='data', | |
train=True, | |
transform=transforms.ToTensor(), | |
download=True) | |
train_loader = DataLoader(dataset=train_dataset, | |
batch_size=batch_size, | |
shuffle=True) | |
class VGG16(torch.nn.Module): | |
def __init__(self, num_features, num_classes): | |
super(VGG16, self).__init__() | |
# calculate same padding: | |
# (w - k + 2*p)/s + 1 = o | |
# => p = (s(o-1) - w + k)/2 | |
self.block_1 = nn.Sequential( | |
nn.Conv2d(in_channels=3, | |
out_channels=64, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
# (1(32-1)- 32 + 3)/2 = 1 | |
padding=1), | |
nn.ReLU(), | |
nn.Conv2d(in_channels=64, | |
out_channels=64, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=(2, 2), | |
stride=(2, 2)) | |
) | |
self.block_2 = nn.Sequential( | |
nn.Conv2d(in_channels=64, | |
out_channels=128, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=1), | |
nn.ReLU(), | |
nn.Conv2d(in_channels=128, | |
out_channels=128, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=(2, 2), | |
stride=(2, 2)) | |
) | |
self.block_3 = nn.Sequential( | |
nn.Conv2d(in_channels=128, | |
out_channels=256, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=1), | |
nn.ReLU(), | |
nn.Conv2d(in_channels=256, | |
out_channels=256, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=1), | |
nn.ReLU(), | |
nn.Conv2d(in_channels=256, | |
out_channels=256, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=(2, 2), | |
stride=(2, 2)) | |
) | |
self.block_4 = nn.Sequential( | |
nn.Conv2d(in_channels=256, | |
out_channels=512, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=1), | |
nn.ReLU(), | |
nn.Conv2d(in_channels=512, | |
out_channels=512, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=1), | |
nn.ReLU(), | |
nn.Conv2d(in_channels=512, | |
out_channels=512, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=(2, 2), | |
stride=(2, 2)) | |
) | |
self.block_5 = nn.Sequential( | |
nn.Conv2d(in_channels=512, | |
out_channels=512, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=1), | |
nn.ReLU(), | |
nn.Conv2d(in_channels=512, | |
out_channels=512, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=1), | |
nn.ReLU(), | |
nn.Conv2d(in_channels=512, | |
out_channels=512, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=(2, 2), | |
stride=(2, 2)) | |
) | |
self.classifier = nn.Sequential( | |
nn.Linear(512, 4096), | |
nn.Linear(4096, 4096), | |
nn.Linear(4096, num_classes) | |
) | |
for m in self.modules(): | |
if isinstance(m, torch.nn.Conv2d): | |
#n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
#m.weight.data.normal_(0, np.sqrt(2. / n)) | |
m.weight.detach().normal_(0, 0.05) | |
if m.bias is not None: | |
m.bias.detach().zero_() | |
elif isinstance(m, torch.nn.Linear): | |
m.weight.detach().normal_(0, 0.05) | |
m.bias.detach().detach().zero_() | |
def forward(self, x): | |
x = self.block_1(x) | |
x = self.block_2(x) | |
x = self.block_3(x) | |
x = self.block_4(x) | |
x = self.block_5(x) | |
logits = self.classifier(x.view(-1, 512)) | |
probas = F.softmax(logits, dim=1) | |
return logits, probas | |
torch.manual_seed(random_seed) | |
model = VGG16(num_features=num_features, | |
num_classes=num_classes) | |
model = model.to(device) | |
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) | |
start_time = time.time() | |
for epoch in range(num_epochs): | |
model.train() | |
for batch_idx, (features, targets) in enumerate(train_loader): | |
features = features.to(device) | |
targets = targets.to(device) | |
### FORWARD AND BACK PROP | |
logits, probas = model(features) | |
cost = F.cross_entropy(logits, targets) | |
optimizer.zero_grad() | |
cost.backward() | |
### UPDATE MODEL PARAMETERS | |
optimizer.step() | |
### LOGGING | |
if not batch_idx % 50: | |
print ('Epoch: %03d/%03d | Batch %04d/%04d | Cost: %.4f' | |
%(epoch+1, num_epochs, batch_idx, | |
len(train_loader), cost)) | |
print('Time elapsed: %.2f min' % ((time.time() - start_time)/60)) | |
print('Total Training Time: %.2f min' % ((time.time() - start_time)/60)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torchvision import datasets | |
from torchvision import transforms | |
from torch.utils.data import DataLoader | |
if torch.cuda.is_available(): | |
torch.backends.cudnn.deterministic = True | |
# Device | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
print('Device:', device) | |
# Hyperparameters | |
random_seed = 1 | |
learning_rate = 0.001 | |
num_epochs = 50 | |
batch_size = 128 | |
# Architecture | |
num_features = 784 | |
num_classes = 10 | |
train_dataset = datasets.CIFAR10(root='data', | |
train=True, | |
transform=transforms.ToTensor(), | |
download=True) | |
train_loader = DataLoader(dataset=train_dataset, | |
batch_size=batch_size, | |
shuffle=True) | |
all_features = torch.zeros([len(train_dataset), 3, 32, 32]).float() | |
all_targets = torch.zeros(len(train_dataset)).long() | |
all_batch_start, all_batch_end = [], [] | |
for batch_idx, (features, targets) in enumerate(train_loader): | |
batch_start = batch_idx*targets.size(0) | |
batch_end = (batch_idx+1)*targets.size(0) | |
all_batch_start.append(batch_start) | |
all_batch_end.append(batch_end) | |
all_features[batch_start: batch_end] = features | |
all_targets[batch_start: batch_end] = targets | |
class VGG16(torch.nn.Module): | |
def __init__(self, num_features, num_classes): | |
super(VGG16, self).__init__() | |
# calculate same padding: | |
# (w - k + 2*p)/s + 1 = o | |
# => p = (s(o-1) - w + k)/2 | |
self.block_1 = nn.Sequential( | |
nn.Conv2d(in_channels=3, | |
out_channels=64, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
# (1(32-1)- 32 + 3)/2 = 1 | |
padding=1), | |
nn.ReLU(), | |
nn.Conv2d(in_channels=64, | |
out_channels=64, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=(2, 2), | |
stride=(2, 2)) | |
) | |
self.block_2 = nn.Sequential( | |
nn.Conv2d(in_channels=64, | |
out_channels=128, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=1), | |
nn.ReLU(), | |
nn.Conv2d(in_channels=128, | |
out_channels=128, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=(2, 2), | |
stride=(2, 2)) | |
) | |
self.block_3 = nn.Sequential( | |
nn.Conv2d(in_channels=128, | |
out_channels=256, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=1), | |
nn.ReLU(), | |
nn.Conv2d(in_channels=256, | |
out_channels=256, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=1), | |
nn.ReLU(), | |
nn.Conv2d(in_channels=256, | |
out_channels=256, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=(2, 2), | |
stride=(2, 2)) | |
) | |
self.block_4 = nn.Sequential( | |
nn.Conv2d(in_channels=256, | |
out_channels=512, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=1), | |
nn.ReLU(), | |
nn.Conv2d(in_channels=512, | |
out_channels=512, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=1), | |
nn.ReLU(), | |
nn.Conv2d(in_channels=512, | |
out_channels=512, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=(2, 2), | |
stride=(2, 2)) | |
) | |
self.block_5 = nn.Sequential( | |
nn.Conv2d(in_channels=512, | |
out_channels=512, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=1), | |
nn.ReLU(), | |
nn.Conv2d(in_channels=512, | |
out_channels=512, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=1), | |
nn.ReLU(), | |
nn.Conv2d(in_channels=512, | |
out_channels=512, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=(2, 2), | |
stride=(2, 2)) | |
) | |
self.classifier = nn.Sequential( | |
nn.Linear(512, 4096), | |
nn.Linear(4096, 4096), | |
nn.Linear(4096, num_classes) | |
) | |
for m in self.modules(): | |
if isinstance(m, torch.nn.Conv2d): | |
#n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
#m.weight.data.normal_(0, np.sqrt(2. / n)) | |
m.weight.detach().normal_(0, 0.05) | |
if m.bias is not None: | |
m.bias.detach().zero_() | |
elif isinstance(m, torch.nn.Linear): | |
m.weight.detach().normal_(0, 0.05) | |
m.bias.detach().detach().zero_() | |
def forward(self, x): | |
x = self.block_1(x) | |
x = self.block_2(x) | |
x = self.block_3(x) | |
x = self.block_4(x) | |
x = self.block_5(x) | |
logits = self.classifier(x.view(-1, 512)) | |
probas = F.softmax(logits, dim=1) | |
return logits, probas | |
torch.manual_seed(random_seed) | |
model = VGG16(num_features=num_features, | |
num_classes=num_classes) | |
model = model.to(device) | |
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) | |
start_time = time.time() | |
for epoch in range(num_epochs): | |
shuffle_idx = torch.randperm(len(train_dataset)) | |
all_features = all_features[shuffle_idx] | |
all_targets = all_targets[shuffle_idx] | |
model.train() | |
for batch_idx, (start, end) in enumerate(zip(all_batch_start, all_batch_end)): | |
features = all_features[start:end] | |
targets = all_targets[start:end] | |
features = features.to(device) | |
targets = targets.to(device) | |
### FORWARD AND BACK PROP | |
logits, probas = model(features) | |
cost = F.cross_entropy(logits, targets) | |
optimizer.zero_grad() | |
cost.backward() | |
### UPDATE MODEL PARAMETERS | |
optimizer.step() | |
### LOGGING | |
if not batch_idx % 50: | |
print ('Epoch: %03d/%03d | Batch %04d/%04d | Cost: %.4f' | |
%(epoch+1, num_epochs, batch_idx, | |
len(train_loader), cost)) | |
print('Time elapsed: %.2f min' % ((time.time() - start_time)/60)) | |
print('Total Training Time: %.2f min' % ((time.time() - start_time)/60)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
vgg16.py in PyTorch 1.0.1 with RTX2080Ti:
vgg16_inmemory-py in PyTorch 1.0.1 with RTX2080Ti (this one loads the dataset into memory and fetches the batches from there: