Created
July 1, 2017 08:30
-
-
Save ratsgo/b818810b151af8abbf6af009ba913a2c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""This file contains code for use with "Think Bayes", | |
by Allen B. Downey, available from greenteapress.com | |
Copyright 2012 Allen B. Downey | |
License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html | |
""" | |
"""This file contains class definitions for: | |
Hist: represents a histogram (map from values to integer frequencies). | |
Pmf: represents a probability mass function (map from values to probs). | |
_DictWrapper: private parent class for Hist and Pmf. | |
Cdf: represents a discrete cumulative distribution function | |
Pdf: represents a continuous probability density function | |
""" | |
import bisect | |
import copy | |
import logging | |
import math | |
import numpy | |
import random | |
import scipy.stats | |
from scipy.special import erf, erfinv | |
def Odds(p): | |
"""Computes odds for a given probability. | |
Example: p=0.75 means 75 for and 25 against, or 3:1 odds in favor. | |
Note: when p=1, the formula for odds divides by zero, which is | |
normally undefined. But I think it is reasonable to define Odds(1) | |
to be infinity, so that's what this function does. | |
p: float 0-1 | |
Returns: float odds | |
""" | |
if p == 1: | |
return float('inf') | |
return p / (1 - p) | |
def Probability(o): | |
"""Computes the probability corresponding to given odds. | |
Example: o=2 means 2:1 odds in favor, or 2/3 probability | |
o: float odds, strictly positive | |
Returns: float probability | |
""" | |
return o / (o + 1) | |
def Probability2(yes, no): | |
"""Computes the probability corresponding to given odds. | |
Example: yes=2, no=1 means 2:1 odds in favor, or 2/3 probability. | |
yes, no: int or float odds in favor | |
""" | |
return float(yes) / (yes + no) | |
class Interpolator(object): | |
"""Represents a mapping between sorted sequences; performs linear interp. | |
Attributes: | |
xs: sorted list | |
ys: sorted list | |
""" | |
def __init__(self, xs, ys): | |
self.xs = xs | |
self.ys = ys | |
def Lookup(self, x): | |
"""Looks up x and returns the corresponding value of y.""" | |
return self._Bisect(x, self.xs, self.ys) | |
def Reverse(self, y): | |
"""Looks up y and returns the corresponding value of x.""" | |
return self._Bisect(y, self.ys, self.xs) | |
def _Bisect(self, x, xs, ys): | |
"""Helper function.""" | |
if x <= xs[0]: | |
return ys[0] | |
if x >= xs[-1]: | |
return ys[-1] | |
i = bisect.bisect(xs, x) | |
frac = 1.0 * (x - xs[i - 1]) / (xs[i] - xs[i - 1]) | |
y = ys[i - 1] + frac * 1.0 * (ys[i] - ys[i - 1]) | |
return y | |
class _DictWrapper(object): | |
"""An object that contains a dictionary.""" | |
def __init__(self, values=None, name=''): | |
"""Initializes the distribution. | |
hypos: sequence of hypotheses | |
""" | |
self.name = name | |
self.d = {} | |
# flag whether the distribution is under a log transform | |
self.log = False | |
if values is None: | |
return | |
init_methods = [ | |
self.InitPmf, | |
self.InitMapping, | |
self.InitSequence, | |
self.InitFailure, | |
] | |
for method in init_methods: | |
try: | |
method(values) | |
break | |
except AttributeError: | |
continue | |
if len(self) > 0: | |
self.Normalize() | |
def InitSequence(self, values): | |
"""Initializes with a sequence of equally-likely values. | |
values: sequence of values | |
""" | |
for value in values: | |
self.Set(value, 1) | |
def InitMapping(self, values): | |
"""Initializes with a map from value to probability. | |
values: map from value to probability | |
""" | |
for value, prob in values.iteritems(): | |
self.Set(value, prob) | |
def InitPmf(self, values): | |
"""Initializes with a Pmf. | |
values: Pmf object | |
""" | |
for value, prob in values.Items(): | |
self.Set(value, prob) | |
def InitFailure(self, values): | |
"""Raises an error.""" | |
raise ValueError('None of the initialization methods worked.') | |
def __len__(self): | |
return len(self.d) | |
def __iter__(self): | |
return iter(self.d) | |
def iterkeys(self): | |
return iter(self.d) | |
def __contains__(self, value): | |
return value in self.d | |
def Copy(self, name=None): | |
"""Returns a copy. | |
Make a shallow copy of d. If you want a deep copy of d, | |
use copy.deepcopy on the whole object. | |
Args: | |
name: string name for the new Hist | |
""" | |
new = copy.copy(self) | |
new.d = copy.copy(self.d) | |
new.name = name if name is not None else self.name | |
return new | |
def Scale(self, factor): | |
"""Multiplies the values by a factor. | |
factor: what to multiply by | |
Returns: new object | |
""" | |
new = self.Copy() | |
new.d.clear() | |
for val, prob in self.Items(): | |
new.Set(val * factor, prob) | |
return new | |
def Log(self, m=None): | |
"""Log transforms the probabilities. | |
Removes values with probability 0. | |
Normalizes so that the largest logprob is 0. | |
""" | |
if self.log: | |
raise ValueError("Pmf/Hist already under a log transform") | |
self.log = True | |
if m is None: | |
m = self.MaxLike() | |
for x, p in self.d.iteritems(): | |
if p: | |
self.Set(x, math.log(p / m)) | |
else: | |
self.Remove(x) | |
def Exp(self, m=None): | |
"""Exponentiates the probabilities. | |
m: how much to shift the ps before exponentiating | |
If m is None, normalizes so that the largest prob is 1. | |
""" | |
if not self.log: | |
raise ValueError("Pmf/Hist not under a log transform") | |
self.log = False | |
if m is None: | |
m = self.MaxLike() | |
for x, p in self.d.iteritems(): | |
self.Set(x, math.exp(p - m)) | |
def GetDict(self): | |
"""Gets the dictionary.""" | |
return self.d | |
def SetDict(self, d): | |
"""Sets the dictionary.""" | |
self.d = d | |
def Values(self): | |
"""Gets an unsorted sequence of values. | |
Note: one source of confusion is that the keys of this | |
dictionary are the values of the Hist/Pmf, and the | |
values of the dictionary are frequencies/probabilities. | |
""" | |
return self.d.keys() | |
def Items(self): | |
"""Gets an unsorted sequence of (value, freq/prob) pairs.""" | |
return self.d.items() | |
def Render(self): | |
"""Generates a sequence of points suitable for plotting. | |
Returns: | |
tuple of (sorted value sequence, freq/prob sequence) | |
""" | |
return zip(*sorted(self.Items())) | |
def Print(self): | |
"""Prints the values and freqs/probs in ascending order.""" | |
for val, prob in sorted(self.d.iteritems()): | |
print val, prob | |
def Set(self, x, y=0): | |
"""Sets the freq/prob associated with the value x. | |
Args: | |
x: number value | |
y: number freq or prob | |
""" | |
self.d[x] = y | |
def Incr(self, x, term=1): | |
"""Increments the freq/prob associated with the value x. | |
Args: | |
x: number value | |
term: how much to increment by | |
""" | |
self.d[x] = self.d.get(x, 0) + term | |
def Mult(self, x, factor): | |
"""Scales the freq/prob associated with the value x. | |
Args: | |
x: number value | |
factor: how much to multiply by | |
""" | |
self.d[x] = self.d.get(x, 0) * factor | |
def Remove(self, x): | |
"""Removes a value. | |
Throws an exception if the value is not there. | |
Args: | |
x: value to remove | |
""" | |
del self.d[x] | |
def Total(self): | |
"""Returns the total of the frequencies/probabilities in the map.""" | |
total = sum(self.d.itervalues()) | |
return total | |
def MaxLike(self): | |
"""Returns the largest frequency/probability in the map.""" | |
return max(self.d.itervalues()) | |
class Hist(_DictWrapper): | |
"""Represents a histogram, which is a map from values to frequencies. | |
Values can be any hashable type; frequencies are integer counters. | |
""" | |
def Freq(self, x): | |
"""Gets the frequency associated with the value x. | |
Args: | |
x: number value | |
Returns: | |
int frequency | |
""" | |
return self.d.get(x, 0) | |
def Freqs(self, xs): | |
"""Gets frequencies for a sequence of values.""" | |
return [self.Freq(x) for x in xs] | |
def IsSubset(self, other): | |
"""Checks whether the values in this histogram are a subset of | |
the values in the given histogram.""" | |
for val, freq in self.Items(): | |
if freq > other.Freq(val): | |
return False | |
return True | |
def Subtract(self, other): | |
"""Subtracts the values in the given histogram from this histogram.""" | |
for val, freq in other.Items(): | |
self.Incr(val, -freq) | |
class Pmf(_DictWrapper): | |
"""Represents a probability mass function. | |
Values can be any hashable type; probabilities are floating-point. | |
Pmfs are not necessarily normalized. | |
""" | |
def Prob(self, x, default=0): | |
"""Gets the probability associated with the value x. | |
Args: | |
x: number value | |
default: value to return if the key is not there | |
Returns: | |
float probability | |
""" | |
return self.d.get(x, default) | |
def Probs(self, xs): | |
"""Gets probabilities for a sequence of values.""" | |
return [self.Prob(x) for x in xs] | |
def MakeCdf(self, name=None): | |
"""Makes a Cdf.""" | |
return MakeCdfFromPmf(self, name=name) | |
def ProbGreater(self, x): | |
t = [prob for (val, prob) in self.d.iteritems() if val > x] | |
return sum(t) | |
def ProbLess(self, x): | |
t = [prob for (val, prob) in self.d.iteritems() if val < x] | |
return sum(t) | |
def Normalize(self, fraction=1.0): | |
"""Normalizes this PMF so the sum of all probs is fraction. | |
Args: | |
fraction: what the total should be after normalization | |
Returns: the total probability before normalizing | |
""" | |
if self.log: | |
raise ValueError("Pmf is under a log transform") | |
total = self.Total() | |
if total == 0.0: | |
raise ValueError('total probability is zero.') | |
logging.warning('Normalize: total probability is zero.') | |
return total | |
factor = float(fraction) / total | |
for x in self.d: | |
self.d[x] *= factor | |
return total | |
def Random(self): | |
"""Chooses a random element from this PMF. | |
Returns: | |
float value from the Pmf | |
""" | |
if len(self.d) == 0: | |
raise ValueError('Pmf contains no values.') | |
target = random.random() | |
total = 0.0 | |
for x, p in self.d.iteritems(): | |
total += p | |
if total >= target: | |
return x | |
# we shouldn't get here | |
assert False | |
def Mean(self): | |
"""Computes the mean of a PMF. | |
Returns: | |
float mean | |
""" | |
mu = 0.0 | |
for x, p in self.d.iteritems(): | |
mu += p * x | |
return mu | |
def Var(self, mu=None): | |
"""Computes the variance of a PMF. | |
Args: | |
mu: the point around which the variance is computed; | |
if omitted, computes the mean | |
Returns: | |
float variance | |
""" | |
if mu is None: | |
mu = self.Mean() | |
var = 0.0 | |
for x, p in self.d.iteritems(): | |
var += p * (x - mu) ** 2 | |
return var | |
def MaximumLikelihood(self): | |
"""Returns the value with the highest probability. | |
Returns: float probability | |
""" | |
prob, val = max((prob, val) for val, prob in self.Items()) | |
return val | |
def CredibleInterval(self, percentage=90): | |
"""Computes the central credible interval. | |
If percentage=90, computes the 90% CI. | |
Args: | |
percentage: float between 0 and 100 | |
Returns: | |
sequence of two floats, low and high | |
""" | |
cdf = self.MakeCdf() | |
return cdf.CredibleInterval(percentage) | |
def __add__(self, other): | |
"""Computes the Pmf of the sum of values drawn from self and other. | |
other: another Pmf | |
returns: new Pmf | |
""" | |
try: | |
return self.AddPmf(other) | |
except AttributeError: | |
return self.AddConstant(other) | |
def AddPmf(self, other): | |
"""Computes the Pmf of the sum of values drawn from self and other. | |
other: another Pmf | |
returns: new Pmf | |
""" | |
pmf = Pmf() | |
for v1, p1 in self.Items(): | |
for v2, p2 in other.Items(): | |
pmf.Incr(v1 + v2, p1 * p2) | |
return pmf | |
def AddConstant(self, other): | |
"""Computes the Pmf of the sum a constant and values from self. | |
other: a number | |
returns: new Pmf | |
""" | |
pmf = Pmf() | |
for v1, p1 in self.Items(): | |
pmf.Set(v1 + other, p1) | |
return pmf | |
def __sub__(self, other): | |
"""Computes the Pmf of the diff of values drawn from self and other. | |
other: another Pmf | |
returns: new Pmf | |
""" | |
pmf = Pmf() | |
for v1, p1 in self.Items(): | |
for v2, p2 in other.Items(): | |
pmf.Incr(v1 - v2, p1 * p2) | |
return pmf | |
def Max(self, k): | |
"""Computes the CDF of the maximum of k selections from this dist. | |
k: int | |
returns: new Cdf | |
""" | |
cdf = self.MakeCdf() | |
cdf.ps = [p ** k for p in cdf.ps] | |
return cdf | |
class Joint(Pmf): | |
"""Represents a joint distribution. | |
The values are sequences (usually tuples) | |
""" | |
def Marginal(self, i, name=''): | |
"""Gets the marginal distribution of the indicated variable. | |
i: index of the variable we want | |
Returns: Pmf | |
""" | |
pmf = Pmf(name=name) | |
for vs, prob in self.Items(): | |
pmf.Incr(vs[i], prob) | |
return pmf | |
def Conditional(self, i, j, val, name=''): | |
"""Gets the conditional distribution of the indicated variable. | |
Distribution of vs[i], conditioned on vs[j] = val. | |
i: index of the variable we want | |
j: which variable is conditioned on | |
val: the value the jth variable has to have | |
Returns: Pmf | |
""" | |
pmf = Pmf(name=name) | |
for vs, prob in self.Items(): | |
if vs[j] != val: continue | |
pmf.Incr(vs[i], prob) | |
pmf.Normalize() | |
return pmf | |
def MaxLikeInterval(self, percentage=90): | |
"""Returns the maximum-likelihood credible interval. | |
If percentage=90, computes a 90% CI containing the values | |
with the highest likelihoods. | |
percentage: float between 0 and 100 | |
Returns: list of values from the suite | |
""" | |
interval = [] | |
total = 0 | |
t = [(prob, val) for val, prob in self.Items()] | |
t.sort(reverse=True) | |
for prob, val in t: | |
interval.append(val) | |
total += prob | |
if total >= percentage / 100.0: | |
break | |
return interval | |
def MakeJoint(pmf1, pmf2): | |
"""Joint distribution of values from pmf1 and pmf2. | |
Args: | |
pmf1: Pmf object | |
pmf2: Pmf object | |
Returns: | |
Joint pmf of value pairs | |
""" | |
joint = Joint() | |
for v1, p1 in pmf1.Items(): | |
for v2, p2 in pmf2.Items(): | |
joint.Set((v1, v2), p1 * p2) | |
return joint | |
def MakeHistFromList(t, name=''): | |
"""Makes a histogram from an unsorted sequence of values. | |
Args: | |
t: sequence of numbers | |
name: string name for this histogram | |
Returns: | |
Hist object | |
""" | |
hist = Hist(name=name) | |
[hist.Incr(x) for x in t] | |
return hist | |
def MakeHistFromDict(d, name=''): | |
"""Makes a histogram from a map from values to frequencies. | |
Args: | |
d: dictionary that maps values to frequencies | |
name: string name for this histogram | |
Returns: | |
Hist object | |
""" | |
return Hist(d, name) | |
def MakePmfFromList(t, name=''): | |
"""Makes a PMF from an unsorted sequence of values. | |
Args: | |
t: sequence of numbers | |
name: string name for this PMF | |
Returns: | |
Pmf object | |
""" | |
hist = MakeHistFromList(t) | |
d = hist.GetDict() | |
pmf = Pmf(d, name) | |
pmf.Normalize() | |
return pmf | |
def MakePmfFromDict(d, name=''): | |
"""Makes a PMF from a map from values to probabilities. | |
Args: | |
d: dictionary that maps values to probabilities | |
name: string name for this PMF | |
Returns: | |
Pmf object | |
""" | |
pmf = Pmf(d, name) | |
pmf.Normalize() | |
return pmf | |
def MakePmfFromItems(t, name=''): | |
"""Makes a PMF from a sequence of value-probability pairs | |
Args: | |
t: sequence of value-probability pairs | |
name: string name for this PMF | |
Returns: | |
Pmf object | |
""" | |
pmf = Pmf(dict(t), name) | |
pmf.Normalize() | |
return pmf | |
def MakePmfFromHist(hist, name=None): | |
"""Makes a normalized PMF from a Hist object. | |
Args: | |
hist: Hist object | |
name: string name | |
Returns: | |
Pmf object | |
""" | |
if name is None: | |
name = hist.name | |
# make a copy of the dictionary | |
d = dict(hist.GetDict()) | |
pmf = Pmf(d, name) | |
pmf.Normalize() | |
return pmf | |
def MakePmfFromCdf(cdf, name=None): | |
"""Makes a normalized Pmf from a Cdf object. | |
Args: | |
cdf: Cdf object | |
name: string name for the new Pmf | |
Returns: | |
Pmf object | |
""" | |
if name is None: | |
name = cdf.name | |
pmf = Pmf(name=name) | |
prev = 0.0 | |
for val, prob in cdf.Items(): | |
pmf.Incr(val, prob - prev) | |
prev = prob | |
return pmf | |
def MakeMixture(metapmf, name='mix'): | |
"""Make a mixture distribution. | |
Args: | |
metapmf: Pmf that maps from Pmfs to probs. | |
name: string name for the new Pmf. | |
Returns: Pmf object. | |
""" | |
mix = Pmf(name=name) | |
for pmf, p1 in metapmf.Items(): | |
for x, p2 in pmf.Items(): | |
mix.Incr(x, p1 * p2) | |
return mix | |
def MakeUniformPmf(low, high, n): | |
"""Make a uniform Pmf. | |
low: lowest value (inclusive) | |
high: highest value (inclusize) | |
n: number of values | |
""" | |
pmf = Pmf() | |
for x in numpy.linspace(low, high, n): | |
pmf.Set(x, 1) | |
pmf.Normalize() | |
return pmf | |
class Cdf(object): | |
"""Represents a cumulative distribution function. | |
Attributes: | |
xs: sequence of values | |
ps: sequence of probabilities | |
name: string used as a graph label. | |
""" | |
def __init__(self, xs=None, ps=None, name=''): | |
self.xs = [] if xs is None else xs | |
self.ps = [] if ps is None else ps | |
self.name = name | |
def Copy(self, name=None): | |
"""Returns a copy of this Cdf. | |
Args: | |
name: string name for the new Cdf | |
""" | |
if name is None: | |
name = self.name | |
return Cdf(list(self.xs), list(self.ps), name) | |
def MakePmf(self, name=None): | |
"""Makes a Pmf.""" | |
return MakePmfFromCdf(self, name=name) | |
def Values(self): | |
"""Returns a sorted list of values. | |
""" | |
return self.xs | |
def Items(self): | |
"""Returns a sorted sequence of (value, probability) pairs. | |
Note: in Python3, returns an iterator. | |
""" | |
return zip(self.xs, self.ps) | |
def Append(self, x, p): | |
"""Add an (x, p) pair to the end of this CDF. | |
Note: this us normally used to build a CDF from scratch, not | |
to modify existing CDFs. It is up to the caller to make sure | |
that the result is a legal CDF. | |
""" | |
self.xs.append(x) | |
self.ps.append(p) | |
def Shift(self, term): | |
"""Adds a term to the xs. | |
term: how much to add | |
""" | |
new = self.Copy() | |
new.xs = [x + term for x in self.xs] | |
return new | |
def Scale(self, factor): | |
"""Multiplies the xs by a factor. | |
factor: what to multiply by | |
""" | |
new = self.Copy() | |
new.xs = [x * factor for x in self.xs] | |
return new | |
def Prob(self, x): | |
"""Returns CDF(x), the probability that corresponds to value x. | |
Args: | |
x: number | |
Returns: | |
float probability | |
""" | |
if x < self.xs[0]: return 0.0 | |
index = bisect.bisect(self.xs, x) | |
p = self.ps[index - 1] | |
return p | |
def Value(self, p): | |
"""Returns InverseCDF(p), the value that corresponds to probability p. | |
Args: | |
p: number in the range [0, 1] | |
Returns: | |
number value | |
""" | |
if p < 0 or p > 1: | |
raise ValueError('Probability p must be in range [0, 1]') | |
if p == 0: return self.xs[0] | |
if p == 1: return self.xs[-1] | |
index = bisect.bisect(self.ps, p) | |
if p == self.ps[index - 1]: | |
return self.xs[index - 1] | |
else: | |
return self.xs[index] | |
def Percentile(self, p): | |
"""Returns the value that corresponds to percentile p. | |
Args: | |
p: number in the range [0, 100] | |
Returns: | |
number value | |
""" | |
return self.Value(p / 100.0) | |
def Random(self): | |
"""Chooses a random value from this distribution.""" | |
return self.Value(random.random()) | |
def Sample(self, n): | |
"""Generates a random sample from this distribution. | |
Args: | |
n: int length of the sample | |
""" | |
return [self.Random() for i in range(n)] | |
def Mean(self): | |
"""Computes the mean of a CDF. | |
Returns: | |
float mean | |
""" | |
old_p = 0 | |
total = 0.0 | |
for x, new_p in zip(self.xs, self.ps): | |
p = new_p - old_p | |
total += p * x | |
old_p = new_p | |
return total | |
def CredibleInterval(self, percentage=90): | |
"""Computes the central credible interval. | |
If percentage=90, computes the 90% CI. | |
Args: | |
percentage: float between 0 and 100 | |
Returns: | |
sequence of two floats, low and high | |
""" | |
prob = (1 - percentage / 100.0) / 2 | |
interval = self.Value(prob), self.Value(1 - prob) | |
return interval | |
def _Round(self, multiplier=1000.0): | |
""" | |
An entry is added to the cdf only if the percentile differs | |
from the previous value in a significant digit, where the number | |
of significant digits is determined by multiplier. The | |
default is 1000, which keeps log10(1000) = 3 significant digits. | |
""" | |
# TODO(write this method) | |
raise UnimplementedMethodException() | |
def Render(self): | |
"""Generates a sequence of points suitable for plotting. | |
An empirical CDF is a step function; linear interpolation | |
can be misleading. | |
Returns: | |
tuple of (xs, ps) | |
""" | |
xs = [self.xs[0]] | |
ps = [0.0] | |
for i, p in enumerate(self.ps): | |
xs.append(self.xs[i]) | |
ps.append(p) | |
try: | |
xs.append(self.xs[i + 1]) | |
ps.append(p) | |
except IndexError: | |
pass | |
return xs, ps | |
def Max(self, k): | |
"""Computes the CDF of the maximum of k selections from this dist. | |
k: int | |
returns: new Cdf | |
""" | |
cdf = self.Copy() | |
cdf.ps = [p ** k for p in cdf.ps] | |
return cdf | |
def MakeCdfFromItems(items, name=''): | |
"""Makes a cdf from an unsorted sequence of (value, frequency) pairs. | |
Args: | |
items: unsorted sequence of (value, frequency) pairs | |
name: string name for this CDF | |
Returns: | |
cdf: list of (value, fraction) pairs | |
""" | |
runsum = 0 | |
xs = [] | |
cs = [] | |
for value, count in sorted(items): | |
runsum += count | |
xs.append(value) | |
cs.append(runsum) | |
total = float(runsum) | |
ps = [c / total for c in cs] | |
cdf = Cdf(xs, ps, name) | |
return cdf | |
def MakeCdfFromDict(d, name=''): | |
"""Makes a CDF from a dictionary that maps values to frequencies. | |
Args: | |
d: dictionary that maps values to frequencies. | |
name: string name for the data. | |
Returns: | |
Cdf object | |
""" | |
return MakeCdfFromItems(d.iteritems(), name) | |
def MakeCdfFromHist(hist, name=''): | |
"""Makes a CDF from a Hist object. | |
Args: | |
hist: Pmf.Hist object | |
name: string name for the data. | |
Returns: | |
Cdf object | |
""" | |
return MakeCdfFromItems(hist.Items(), name) | |
def MakeCdfFromPmf(pmf, name=None): | |
"""Makes a CDF from a Pmf object. | |
Args: | |
pmf: Pmf.Pmf object | |
name: string name for the data. | |
Returns: | |
Cdf object | |
""" | |
if name == None: | |
name = pmf.name | |
return MakeCdfFromItems(pmf.Items(), name) | |
def MakeCdfFromList(seq, name=''): | |
"""Creates a CDF from an unsorted sequence. | |
Args: | |
seq: unsorted sequence of sortable values | |
name: string name for the cdf | |
Returns: | |
Cdf object | |
""" | |
hist = MakeHistFromList(seq) | |
return MakeCdfFromHist(hist, name) | |
class UnimplementedMethodException(Exception): | |
"""Exception if someone calls a method that should be overridden.""" | |
class Suite(Pmf): | |
"""Represents a suite of hypotheses and their probabilities.""" | |
def Update(self, data): | |
"""Updates each hypothesis based on the data. | |
data: any representation of the data | |
returns: the normalizing constant | |
""" | |
for hypo in self.Values(): | |
like = self.Likelihood(data, hypo) | |
self.Mult(hypo, like) | |
return self.Normalize() | |
def LogUpdate(self, data): | |
"""Updates a suite of hypotheses based on new data. | |
Modifies the suite directly; if you want to keep the original, make | |
a copy. | |
Note: unlike Update, LogUpdate does not normalize. | |
Args: | |
data: any representation of the data | |
""" | |
for hypo in self.Values(): | |
like = self.LogLikelihood(data, hypo) | |
self.Incr(hypo, like) | |
def UpdateSet(self, dataset): | |
"""Updates each hypothesis based on the dataset. | |
This is more efficient than calling Update repeatedly because | |
it waits until the end to Normalize. | |
Modifies the suite directly; if you want to keep the original, make | |
a copy. | |
dataset: a sequence of data | |
returns: the normalizing constant | |
""" | |
for data in dataset: | |
for hypo in self.Values(): | |
like = self.Likelihood(data, hypo) | |
self.Mult(hypo, like) | |
return self.Normalize() | |
def LogUpdateSet(self, dataset): | |
"""Updates each hypothesis based on the dataset. | |
Modifies the suite directly; if you want to keep the original, make | |
a copy. | |
dataset: a sequence of data | |
returns: None | |
""" | |
for data in dataset: | |
self.LogUpdate(data) | |
def Likelihood(self, data, hypo): | |
"""Computes the likelihood of the data under the hypothesis. | |
hypo: some representation of the hypothesis | |
data: some representation of the data | |
""" | |
raise UnimplementedMethodException() | |
def LogLikelihood(self, data, hypo): | |
"""Computes the log likelihood of the data under the hypothesis. | |
hypo: some representation of the hypothesis | |
data: some representation of the data | |
""" | |
raise UnimplementedMethodException() | |
def Print(self): | |
"""Prints the hypotheses and their probabilities.""" | |
for hypo, prob in sorted(self.Items()): | |
print hypo, prob | |
def MakeOdds(self): | |
"""Transforms from probabilities to odds. | |
Values with prob=0 are removed. | |
""" | |
for hypo, prob in self.Items(): | |
if prob: | |
self.Set(hypo, Odds(prob)) | |
else: | |
self.Remove(hypo) | |
def MakeProbs(self): | |
"""Transforms from odds to probabilities.""" | |
for hypo, odds in self.Items(): | |
self.Set(hypo, Probability(odds)) | |
def MakeSuiteFromList(t, name=''): | |
"""Makes a suite from an unsorted sequence of values. | |
Args: | |
t: sequence of numbers | |
name: string name for this suite | |
Returns: | |
Suite object | |
""" | |
hist = MakeHistFromList(t) | |
d = hist.GetDict() | |
return MakeSuiteFromDict(d) | |
def MakeSuiteFromHist(hist, name=None): | |
"""Makes a normalized suite from a Hist object. | |
Args: | |
hist: Hist object | |
name: string name | |
Returns: | |
Suite object | |
""" | |
if name is None: | |
name = hist.name | |
# make a copy of the dictionary | |
d = dict(hist.GetDict()) | |
return MakeSuiteFromDict(d, name) | |
def MakeSuiteFromDict(d, name=''): | |
"""Makes a suite from a map from values to probabilities. | |
Args: | |
d: dictionary that maps values to probabilities | |
name: string name for this suite | |
Returns: | |
Suite object | |
""" | |
suite = Suite(name=name) | |
suite.SetDict(d) | |
suite.Normalize() | |
return suite | |
def MakeSuiteFromCdf(cdf, name=None): | |
"""Makes a normalized Suite from a Cdf object. | |
Args: | |
cdf: Cdf object | |
name: string name for the new Suite | |
Returns: | |
Suite object | |
""" | |
if name is None: | |
name = cdf.name | |
suite = Suite(name=name) | |
prev = 0.0 | |
for val, prob in cdf.Items(): | |
suite.Incr(val, prob - prev) | |
prev = prob | |
return suite | |
class Pdf(object): | |
"""Represents a probability density function (PDF).""" | |
def Density(self, x): | |
"""Evaluates this Pdf at x. | |
Returns: float probability density | |
""" | |
raise UnimplementedMethodException() | |
def MakePmf(self, xs, name=''): | |
"""Makes a discrete version of this Pdf, evaluated at xs. | |
xs: equally-spaced sequence of values | |
Returns: new Pmf | |
""" | |
pmf = Pmf(name=name) | |
for x in xs: | |
pmf.Set(x, self.Density(x)) | |
pmf.Normalize() | |
return pmf | |
class GaussianPdf(Pdf): | |
"""Represents the PDF of a Gaussian distribution.""" | |
def __init__(self, mu, sigma): | |
"""Constructs a Gaussian Pdf with given mu and sigma. | |
mu: mean | |
sigma: standard deviation | |
""" | |
self.mu = mu | |
self.sigma = sigma | |
def Density(self, x): | |
"""Evaluates this Pdf at x. | |
Returns: float probability density | |
""" | |
return EvalGaussianPdf(x, self.mu, self.sigma) | |
class EstimatedPdf(Pdf): | |
"""Represents a PDF estimated by KDE.""" | |
def __init__(self, sample): | |
"""Estimates the density function based on a sample. | |
sample: sequence of data | |
""" | |
self.kde = scipy.stats.gaussian_kde(sample) | |
def Density(self, x): | |
"""Evaluates this Pdf at x. | |
Returns: float probability density | |
""" | |
return self.kde.evaluate(x) | |
def MakePmf(self, xs, name=''): | |
ps = self.kde.evaluate(xs) | |
pmf = MakePmfFromItems(zip(xs, ps), name=name) | |
return pmf | |
def Percentile(pmf, percentage): | |
"""Computes a percentile of a given Pmf. | |
percentage: float 0-100 | |
""" | |
p = percentage / 100.0 | |
total = 0 | |
for val, prob in pmf.Items(): | |
total += prob | |
if total >= p: | |
return val | |
def CredibleInterval(pmf, percentage=90): | |
"""Computes a credible interval for a given distribution. | |
If percentage=90, computes the 90% CI. | |
Args: | |
pmf: Pmf object representing a posterior distribution | |
percentage: float between 0 and 100 | |
Returns: | |
sequence of two floats, low and high | |
""" | |
cdf = pmf.MakeCdf() | |
prob = (1 - percentage / 100.0) / 2 | |
interval = cdf.Value(prob), cdf.Value(1 - prob) | |
return interval | |
def PmfProbLess(pmf1, pmf2): | |
"""Probability that a value from pmf1 is less than a value from pmf2. | |
Args: | |
pmf1: Pmf object | |
pmf2: Pmf object | |
Returns: | |
float probability | |
""" | |
total = 0.0 | |
for v1, p1 in pmf1.Items(): | |
for v2, p2 in pmf2.Items(): | |
if v1 < v2: | |
total += p1 * p2 | |
return total | |
def PmfProbGreater(pmf1, pmf2): | |
"""Probability that a value from pmf1 is less than a value from pmf2. | |
Args: | |
pmf1: Pmf object | |
pmf2: Pmf object | |
Returns: | |
float probability | |
""" | |
total = 0.0 | |
for v1, p1 in pmf1.Items(): | |
for v2, p2 in pmf2.Items(): | |
if v1 > v2: | |
total += p1 * p2 | |
return total | |
def PmfProbEqual(pmf1, pmf2): | |
"""Probability that a value from pmf1 equals a value from pmf2. | |
Args: | |
pmf1: Pmf object | |
pmf2: Pmf object | |
Returns: | |
float probability | |
""" | |
total = 0.0 | |
for v1, p1 in pmf1.Items(): | |
for v2, p2 in pmf2.Items(): | |
if v1 == v2: | |
total += p1 * p2 | |
return total | |
def RandomSum(dists): | |
"""Chooses a random value from each dist and returns the sum. | |
dists: sequence of Pmf or Cdf objects | |
returns: numerical sum | |
""" | |
total = sum(dist.Random() for dist in dists) | |
return total | |
def SampleSum(dists, n): | |
"""Draws a sample of sums from a list of distributions. | |
dists: sequence of Pmf or Cdf objects | |
n: sample size | |
returns: new Pmf of sums | |
""" | |
pmf = MakePmfFromList(RandomSum(dists) for i in xrange(n)) | |
return pmf | |
def EvalGaussianPdf(x, mu, sigma): | |
"""Computes the unnormalized PDF of the normal distribution. | |
x: value | |
mu: mean | |
sigma: standard deviation | |
returns: float probability density | |
""" | |
return scipy.stats.norm.pdf(x, mu, sigma) | |
def MakeGaussianPmf(mu, sigma, num_sigmas, n=201): | |
"""Makes a PMF discrete approx to a Gaussian distribution. | |
mu: float mean | |
sigma: float standard deviation | |
num_sigmas: how many sigmas to extend in each direction | |
n: number of values in the Pmf | |
returns: normalized Pmf | |
""" | |
pmf = Pmf() | |
low = mu - num_sigmas * sigma | |
high = mu + num_sigmas * sigma | |
for x in numpy.linspace(low, high, n): | |
p = EvalGaussianPdf(x, mu, sigma) | |
pmf.Set(x, p) | |
pmf.Normalize() | |
return pmf | |
def EvalBinomialPmf(k, n, p): | |
"""Evaluates the binomial pmf. | |
Returns the probabily of k successes in n trials with probability p. | |
""" | |
return scipy.stats.binom.pmf(k, n, p) | |
def EvalPoissonPmf(k, lam): | |
"""Computes the Poisson PMF. | |
k: number of events | |
lam: parameter lambda in events per unit time | |
returns: float probability | |
""" | |
# don't use the scipy function. for lam=0 it returns NaN; | |
# should be 0.0 | |
return scipy.stats.poisson.pmf(k, lam) | |
#return lam ** k * math.exp(-lam) / math.factorial(k) | |
def MakePoissonPmf(lam, high, step=1): | |
"""Makes a PMF discrete approx to a Poisson distribution. | |
lam: parameter lambda in events per unit time | |
high: upper bound of the Pmf | |
returns: normalized Pmf | |
""" | |
pmf = Pmf() | |
for k in xrange(0, high + 1, step): | |
p = EvalPoissonPmf(k, lam) | |
pmf.Set(k, p) | |
pmf.Normalize() | |
return pmf | |
def EvalExponentialPdf(x, lam): | |
"""Computes the exponential PDF. | |
x: value | |
lam: parameter lambda in events per unit time | |
returns: float probability density | |
""" | |
return lam * math.exp(-lam * x) | |
def EvalExponentialCdf(x, lam): | |
"""Evaluates CDF of the exponential distribution with parameter lam.""" | |
return 1 - math.exp(-lam * x) | |
def MakeExponentialPmf(lam, high, n=200): | |
"""Makes a PMF discrete approx to an exponential distribution. | |
lam: parameter lambda in events per unit time | |
high: upper bound | |
n: number of values in the Pmf | |
returns: normalized Pmf | |
""" | |
pmf = Pmf() | |
for x in numpy.linspace(0, high, n): | |
p = EvalExponentialPdf(x, lam) | |
pmf.Set(x, p) | |
pmf.Normalize() | |
return pmf | |
def StandardGaussianCdf(x, root2=math.sqrt(2)): | |
"""Evaluates the CDF of the standard Gaussian distribution. | |
See http://en.wikipedia.org/wiki/Normal_distribution | |
#Cumulative_distribution_function | |
Args: | |
x: float | |
Returns: | |
float | |
""" | |
return (erf(x / root2) + 1) / 2 | |
def GaussianCdf(x, mu=0, sigma=1): | |
"""Evaluates the CDF of the gaussian distribution. | |
Args: | |
x: float | |
mu: mean parameter | |
sigma: standard deviation parameter | |
Returns: | |
float | |
""" | |
return StandardGaussianCdf(float(x - mu) / sigma) | |
def GaussianCdfInverse(p, mu=0, sigma=1): | |
"""Evaluates the inverse CDF of the gaussian distribution. | |
See http://en.wikipedia.org/wiki/Normal_distribution#Quantile_function | |
Args: | |
p: float | |
mu: mean parameter | |
sigma: standard deviation parameter | |
Returns: | |
float | |
""" | |
x = root2 * erfinv(2 * p - 1) | |
return mu + x * sigma | |
class Beta(object): | |
"""Represents a Beta distribution. | |
See http://en.wikipedia.org/wiki/Beta_distribution | |
""" | |
def __init__(self, alpha=1, beta=1, name=''): | |
"""Initializes a Beta distribution.""" | |
self.alpha = alpha | |
self.beta = beta | |
self.name = name | |
def Update(self, data): | |
"""Updates a Beta distribution. | |
data: pair of int (heads, tails) | |
""" | |
heads, tails = data | |
self.alpha += heads | |
self.beta += tails | |
def Mean(self): | |
"""Computes the mean of this distribution.""" | |
return float(self.alpha) / (self.alpha + self.beta) | |
def Random(self): | |
"""Generates a random variate from this distribution.""" | |
return random.betavariate(self.alpha, self.beta) | |
def EvalPdf(self, x): | |
"""Evaluates the PDF at x.""" | |
return x ** (self.alpha - 1) * (1 - x) ** (self.beta - 1) | |
def MakePmf(self, steps=101, name=''): | |
"""Returns a Pmf of this distribution. | |
Note: Normally, we just evaluate the PDF at a sequence | |
of points and treat the probability density as a probability | |
mass. | |
But if alpha or beta is less than one, we have to be | |
more careful because the PDF goes to infinity at x=0 | |
and x=1. In that case we evaluate the CDF and compute | |
differences. | |
""" | |
if self.alpha < 1 or self.beta < 1: | |
cdf = self.MakeCdf() | |
pmf = cdf.MakePmf() | |
return pmf | |
xs = [i / (steps - 1.0) for i in xrange(steps)] | |
probs = [self.EvalPdf(x) for x in xs] | |
pmf = MakePmfFromDict(dict(zip(xs, probs)), name) | |
return pmf | |
def MakeCdf(self, steps=101): | |
"""Returns the CDF of this distribution.""" | |
xs = [i / (steps - 1.0) for i in xrange(steps)] | |
ps = [scipy.special.betainc(self.alpha, self.beta, x) for x in xs] | |
cdf = Cdf(xs, ps) | |
return cdf | |
class Dirichlet(object): | |
"""Represents a Dirichlet distribution. | |
See http://en.wikipedia.org/wiki/Dirichlet_distribution | |
""" | |
def __init__(self, n, conc=1, name=''): | |
"""Initializes a Dirichlet distribution. | |
n: number of dimensions | |
conc: concentration parameter (smaller yields more concentration) | |
name: string name | |
""" | |
if n < 2: | |
raise ValueError('A Dirichlet distribution with ' | |
'n<2 makes no sense') | |
self.n = n | |
self.params = numpy.ones(n, dtype=numpy.float) * conc | |
self.name = name | |
def Update(self, data): | |
"""Updates a Dirichlet distribution. | |
data: sequence of observations, in order corresponding to params | |
""" | |
m = len(data) | |
self.params[:m] += data | |
def Random(self): | |
"""Generates a random variate from this distribution. | |
Returns: normalized vector of fractions | |
""" | |
p = numpy.random.gamma(self.params) | |
return p / p.sum() | |
def Likelihood(self, data): | |
"""Computes the likelihood of the data. | |
Selects a random vector of probabilities from this distribution. | |
Returns: float probability | |
""" | |
m = len(data) | |
if self.n < m: | |
return 0 | |
x = data | |
p = self.Random() | |
q = p[:m] ** x | |
return q.prod() | |
def LogLikelihood(self, data): | |
"""Computes the log likelihood of the data. | |
Selects a random vector of probabilities from this distribution. | |
Returns: float log probability | |
""" | |
m = len(data) | |
if self.n < m: | |
return float('-inf') | |
x = self.Random() | |
y = numpy.log(x[:m]) * data | |
return y.sum() | |
def MarginalBeta(self, i): | |
"""Computes the marginal distribution of the ith element. | |
See http://en.wikipedia.org/wiki/Dirichlet_distribution | |
#Marginal_distributions | |
i: int | |
Returns: Beta object | |
""" | |
alpha0 = self.params.sum() | |
alpha = self.params[i] | |
return Beta(alpha, alpha0 - alpha) | |
def PredictivePmf(self, xs, name=''): | |
"""Makes a predictive distribution. | |
xs: values to go into the Pmf | |
Returns: Pmf that maps from x to the mean prevalence of x | |
""" | |
alpha0 = self.params.sum() | |
ps = self.params / alpha0 | |
return MakePmfFromItems(zip(xs, ps), name=name) | |
def BinomialCoef(n, k): | |
"""Compute the binomial coefficient "n choose k". | |
n: number of trials | |
k: number of successes | |
Returns: float | |
""" | |
return scipy.misc.comb(n, k) | |
def LogBinomialCoef(n, k): | |
"""Computes the log of the binomial coefficient. | |
http://math.stackexchange.com/questions/64716/ | |
approximating-the-logarithm-of-the-binomial-coefficient | |
n: number of trials | |
k: number of successes | |
Returns: float | |
""" | |
return n * log(n) - k * log(k) - (n - k) * log(n - k) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment