Skip to content

Instantly share code, notes, and snippets.

@rava-dosa
Last active May 18, 2020 11:46
Show Gist options
  • Save rava-dosa/3e4d85f799ddaeb2c903f6eea03590a6 to your computer and use it in GitHub Desktop.
Save rava-dosa/3e4d85f799ddaeb2c903f6eea03590a6 to your computer and use it in GitHub Desktop.

installation help

  1. get nvidia drivers from software updates ubuntu. nvidia-440
  2. get local .deb file of cuda.
  3. install according to instruction
  4. export PATH=/usr/local/cuda-10.2/bin${PATH:+:${PATH}}
  5. export LD_LIBRARY_PATH=/usr/local/cuda-10.2/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
  6. Put these commands in bashrc
  7. source it.
  8. download cudnn tarball
  9. extract and go into that directory. you will find a directroy called "cuda".
  10. sudo cp cuda/include/cudnn.h /usr/local/cuda-10.2/include
  11. sudo cp cuda/lib64/libcudnn* /usr/local/cuda-10.2/lib64
  12. sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda-10.2/lib64/libcudnn*
  13. For pytorch to run cuda you don't need to instal all this shit, just update your ubuntu drivers

Extra stuff

  1. nvcc -v
  2. locate cuda | grep /cuda$
  3. locate cudnn | grep /cudnn$
  4. https://github.com/Hardware-Alchemy/cuDNN-sample
  5. https://github.com/NVIDIA/cuda-samples , make -k
  6. https://github.com/NVIDIA/DALI
  7. nvidia-smi
  8. https://github.com/NVIDIA/
  9. https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html
  10. https://github.com/tbennun/cudnn-training
  11. https://github.com/cupy/cupy
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment