Last active
June 1, 2018 05:42
-
-
Save ravi9/17f1eda5911ed31c38b8b72df18e1d16 to your computer and use it in GitHub Desktop.
Sample Inference benchmark on Amazon DL AMI with inception3.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#Example Inference benchmark on Amazon DL AMI. | |
#Launch a DL AMI | |
#Create an virtual envirnoment. | |
conda create -n tf1.8_mkl-master python=3.6 | |
source activate tf1.8_mkl-master | |
#Download the tf1.8 wheel built with MKLDNN master branch on 05-31-2018 | |
wget https://www.dropbox.com/s/y812q7zpdy4pjed/tensorflow-1.8.0-cp36-cp36m-linux_x86_64.whl | |
#pip install the wheel | |
pip install tensorflow-1.8.0-cp36-cp36m-linux_x86_64.whl | |
# Clone benchmark scripts | |
git clone https://github.com/tensorflow/benchmarks.git | |
cd benchmarks/scripts/tf_cnn_benchmarks/ | |
#Setup num_intra_threads and num_inter_threads | |
num_cores=4 | |
num_inter_t=2 | |
# Set MKL environment variables | |
export KMP_AFFINITY=granularity=fine,verbose,compact,1,0 | |
export KMP_BLOCKTIME=1 | |
export KMP_SETTINGS=1 | |
export OMP_NUM_THREADS=$num_cores | |
export OMP_PROC_BIND=true | |
#Setup network | |
#networks=( alexnet googlenet inception3 resnet50 resnet152 vgg16 ) | |
network=inception3 | |
# Run Inference benchmark, please note the data format is NCHW is optimized for MKL | |
python tf_cnn_benchmarks.py --data_format NCHW --model $network --batch_size 1 --num_batches 30 \ | |
--num_intra_threads $num_cores --num_inter_threads $num_inter_t --forward_only=True |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment