Last active
September 27, 2022 19:10
-
-
Save ravi9/f56fa78e1d15372eb00fc619df8671ed to your computer and use it in GitHub Desktop.
See Medium blog: Accelerate Big Transfer (BiT) model inference with Intel® OpenVINO™
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Copyright (c) 2022 Intel Corporation | |
Licensed under the Apache License, Version 2.0 (the "License"); | |
you may not use this file except in compliance with the License. | |
You may obtain a copy of the License at | |
http://www.apache.org/licenses/LICENSE-2.0 | |
Unless required by applicable law or agreed to in writing, software | |
distributed under the License is distributed on an "AS IS" BASIS, | |
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
See the License for the specific language governing permissions and | |
limitations under the License. | |
""" | |
import argparse | |
import logging as log | |
import sys, os | |
import re | |
from distutils.version import LooseVersion | |
from argparse import ArgumentParser | |
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" | |
try: | |
import tensorflow.compat.v1 as tf_v1 | |
# disable eager execution of TensorFlow 2 environment immediately | |
tf_v1.disable_eager_execution() | |
import tensorflow as tf | |
from tensorflow.python.framework.convert_to_constants import ( | |
convert_variables_to_constants_v2, | |
) | |
except ImportError: | |
import tensorflow as tf_v1 | |
def build_argparser(): | |
usage = """python tf_freeze_graph.py -i </path/to/tf/savedmodel/dir>""" | |
parser = ArgumentParser( | |
prog="python tf_freeze_graph.py", | |
description="Convert TF SavedModel to frozen pb file", | |
epilog=usage, | |
) | |
parser.add_argument("-i", "--input_dir", help="Path to TF SavedModel directory", required=True) | |
return parser.parse_args() | |
def get_graph_def(saved_model_dir): | |
# enable eager execution temporarily while TensorFlow 2 model is being loaded | |
tf_v1.enable_eager_execution() | |
try: | |
# Code to extract Keras model. | |
imported = tf.keras.models.load_model(saved_model_dir, compile=False) | |
except: | |
imported = tf.saved_model.load(saved_model_dir) | |
# to get a signature by key throws KeyError for TF 1.x SavedModel format in case TF 2.x installed | |
concrete_func = imported.signatures[ | |
tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY | |
] | |
# the aggressive inlining parameter needs to freeze a table of embeddings for Keras Embedding operation | |
# and a model with Embedding operation cannot properly converted to IR without this function parameter | |
frozen_func = convert_variables_to_constants_v2( | |
concrete_func, lower_control_flow=True, aggressive_inlining=True | |
) | |
graph_def = frozen_func.graph.as_graph_def(add_shapes=True) | |
return graph_def | |
def main(): | |
args = build_argparser() | |
model_name = os.path.basename(args.input_dir) | |
dir_name = os.path.dirname(args.input_dir) | |
if len(dir_name) == 0 : | |
dir_name = "." | |
graph_def = get_graph_def(args.input_dir) | |
is_text = False | |
new_ext = ".pbtxt" if is_text else ".pb" | |
out_dir = "".join([dir_name, "/frozen_", model_name]) | |
out_name = "frozen_graph.pb" | |
tf_v1.import_graph_def(graph_def, name="") | |
tf_v1.train.write_graph(graph_def, out_dir, out_name, as_text=is_text) | |
print(f"\nFrozen graph saved at: {out_dir}/{out_name}\n") | |
if __name__ == "__main__": | |
sys.exit(main() or 0) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment