Skip to content

Instantly share code, notes, and snippets.

@ravishchawla
Last active June 27, 2018 19:58
Show Gist options
  • Save ravishchawla/486dd44dd8c88f77fca7de894437071a to your computer and use it in GitHub Desktop.
Save ravishchawla/486dd44dd8c88f77fca7de894437071a to your computer and use it in GitHub Desktop.
embeddings_index = dict();
with open('data/glove.6B.100d.txt') as f:
for line in f:
values = line.split();
word = values[0];
coefs = np.asarray(values[1:], dtype='float32');
embeddings_index[word] = coefs;
vocab_size = len(sequence_dict);
embeddings_matrix = np.zeros((vocab_size, 100));
for word, i in sequence_dict.items():
embedding_vector = embeddings_index.get(word);
if embedding_vector is not None:
embeddings_matrix[i] = embedding_vector;
max_cap = 100;
#Re-generate reviews_encoded, X, and Y after changing max_cap
model = Sequential();
model.add(Embedding(len(word_dict), max_cap, input_length=max_cap, weights=[embeddings_matrix], trainable=False));
model.add(LSTM(60, return_sequences=True, recurrent_dropout=0.5));
model.add(Dropout(0.5))
model.add(LSTM(60, recurrent_dropout=0.5));
model.add(Dense(60, activation='relu'));
model.add(Dense(2, activation='softmax'));
print(model.summary());
optimizer = Adam(lr=0.01, decay=0.001);
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
# fit model
model.fit(X_train, Y_train, batch_size=64, epochs=10, validation_data=(X_dev, Y_dev))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment