Last active
December 6, 2019 16:28
-
-
Save ravishchawla/6791a05e04751501ce6b8a90f4fac9a8 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| class Agent(): | |
| """Interacts with and learns from the environment.""" | |
| def __init__(self, state_size, action_size, replay_memory, batch_size, random_seed): | |
| """Initialize an Agent object. | |
| - Instantiate the Agents and Critics, Replay Memory, and a Noise process | |
| """ | |
| def step(self, state, action, reward, next_state, done): | |
| """Save experience in replay memory, and use random sample from buffer to learn.""" | |
| # Save experience / reward | |
| self.memory.add(state, action, reward, next_state, done) | |
| # Learn, if enough samples are available in memory | |
| if len(self.memory) > batch_size: | |
| experiences = self.memory.sample() | |
| self.learn(experiences, GAMMA) | |
| def act(self, state, add_noise=True): | |
| """Returns actions for given state as per current policy.""" | |
| state = torch.from_numpy(state).float().to(device) | |
| #print('state {}'.format(state)); | |
| #print('state shpae {}'.format(state.shape)); | |
| self.actor_local.eval() | |
| with torch.no_grad(): | |
| action = self.actor_local(state).cpu().data.numpy() | |
| self.actor_local.train() | |
| if add_noise: | |
| action += self.noise.sample() | |
| return np.clip(action, -1, 1) | |
| def reset(self): | |
| self.noise.reset() | |
| def learn(self, experiences, gamma): | |
| """Update policy and value parameters using given batch of experience tuples. | |
| Q_targets = r + γ * critic_target(next_state, actor_target(next_state)) | |
| where: | |
| actor_target(state) -> action | |
| critic_target(state, action) -> Q-value | |
| Params | |
| ====== | |
| experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples | |
| gamma (float): discount factor | |
| """ | |
| states, actions, rewards, next_states, dones = experiences | |
| # ---------------------------- update critic ---------------------------- # | |
| # Get predicted next-state actions and Q values from target models | |
| actions_next = self.actor_target(next_states) | |
| Q_targets_next = self.critic_target(next_states, actions_next) | |
| # Compute Q targets for current states (y_i) | |
| Q_targets = rewards + (gamma * Q_targets_next * (1 - dones)) | |
| # Compute critic loss | |
| Q_expected = self.critic_local(states, actions) | |
| critic_loss = F.mse_loss(Q_expected, Q_targets) | |
| # Minimize the loss | |
| self.critic_optimizer.zero_grad() | |
| critic_loss.backward() | |
| torch.nn.utils.clip_grad_norm_(self.critic_local.parameters(), 1) | |
| self.critic_optimizer.step() | |
| # ---------------------------- update actor ---------------------------- # | |
| # Compute actor loss | |
| actions_pred = self.actor_local(states) | |
| actor_loss = -self.critic_local(states, actions_pred).mean() | |
| # Minimize the loss | |
| self.actor_optimizer.zero_grad() | |
| actor_loss.backward() | |
| self.actor_optimizer.step() | |
| # ----------------------- update target networks ----------------------- # | |
| self.soft_update(self.critic_local, self.critic_target, TAU) | |
| self.soft_update(self.actor_local, self.actor_target, TAU) | |
| def soft_update(self, local_model, target_model, tau): | |
| """Soft update model parameters. | |
| θ_target = τ*θ_local + (1 - τ)*θ_target | |
| Params | |
| ====== | |
| local_model: PyTorch model (weights will be copied from) | |
| target_model: PyTorch model (weights will be copied to) | |
| tau (float): interpolation parameter | |
| """ | |
| for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): | |
| target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment