Created
March 25, 2020 21:05
-
-
Save ravishchawla/90d85d5c87f5d4369c6345ef1fc5d028 to your computer and use it in GitHub Desktop.
torch_model_basic.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Model(nn.Module): | |
def __init__(self, embedding_matrix, hidden_unit = 64): | |
super(Model, self).__init__(); | |
vocab_size = embeddings_tensor.shape[0]; | |
embedding_dim = embeddings_tensor.shape[1]; | |
self.embedding_layer = nn.Embedding(vocab_size, embedding_dim); | |
self.embedding_layer.weight = nn.Parameter(embeddings_tensor); | |
self.embedding_layer.weight.requires_grad = True; | |
self.lstm_1 = nn.LSTM(embedding_dim, hidden_unit, bidirectional=True); | |
self.fc_1 = nn.Linear(hidden_unit*2, hidden_unit*2); | |
self.lstm_2 = nn.LSTM(hidden_unit*2, hidden_unit, bidirectional=True); | |
self.fc_2 = nn.Linear(hidden_unit * 2 * 2, 1); | |
def forward(self, x): | |
out = self.embedding_layer(x); | |
out, _ = self.lstm_1(out); | |
out = self.fc_1(out); | |
out = torch.relu(out); | |
out, _ = self.lstm_2(out); | |
out_avg, out_max = torch.mean(out, 1), torch.max(out, 1)[0]; | |
out = torch.cat((out_avg, out_max), 1); | |
out = self.fc_2(out); | |
return out; |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment