Created
June 6, 2019 17:36
-
-
Save ravishchawla/bad1bd7fb9da3406c1ed1625c6442ac6 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
'''Cleaning the *Transcript* dataset''' | |
transcript_event = transcript['event'].str.get_dummies(); | |
transcript_event.columns = ['event_' + '_'.join(col.split(' ')) for col in transcript_event.columns]; | |
# standardize "offer id" column names | |
def transcript_value_clean(x_dict): | |
if 'offer id' in x_dict: | |
x_dict['offer_id'] = x_dict['offer id']; | |
del x_dict['offer id']; | |
return x_dict; | |
transcript_values = transcript['value'].apply(lambda x: transcript_value_clean(x)); | |
transcript_values = pd.DataFrame(list(transcript_values.values)); | |
transcript_values['is_reward'] = transcript_values['reward'].apply(lambda x: int(not np.isnan(x))); | |
# merge amount and reward columns | |
transcript_values['is_amount'] = transcript_values['amount'].apply(lambda x: int(not np.isnan(x))); | |
transcript_values['amount'] = transcript_values[['amount', 'reward']].apply(lambda x: x[0] if np.isnan(x[1]) else x[1], axis=1) | |
# filling null offer ids with "0" | |
transcript_values['has_offer'] = transcript_values['offer_id'].apply(lambda x: int(not pd.isna(x))); | |
transcript_values['offer_id'] = transcript_values['offer_id'].apply(lambda x: '0' if pd.isna(x) else x); | |
transcript = pd.concat([transcript, transcript_values, transcript_event], axis=1); | |
transcript = transcript.drop(['value', 'event', 'reward'], axis=1); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment