Last active
April 7, 2017 01:10
-
-
Save rawkintrevo/c1bb00896263bdc067ddcd8299f4794c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* Created by rawkintrevo on 4/5/17. | |
*/ | |
// Only need these to intelliJ doesn't whine | |
import org.apache.mahout.math._ | |
import org.apache.mahout.math.scalabindings._ | |
import org.apache.mahout.math.drm._ | |
import org.apache.mahout.math.scalabindings.RLikeOps._ | |
import org.apache.mahout.math.drm.RLikeDrmOps._ | |
import org.apache.mahout.sparkbindings._ | |
import org.apache.spark.SparkContext | |
import org.apache.spark.SparkContext._ | |
import org.apache.spark.SparkConf | |
val conf = new SparkConf().setAppName("Simple Application") | |
val sc = new SparkContext(conf) | |
implicit val sdc: org.apache.mahout.sparkbindings.SparkDistributedContext = sc2sdc(sc) | |
// </pandering to intellij> | |
val inputRDD = sc.parallelize(Array( ("u1", "purchase", "iphone"), | |
("u1","purchase","ipad"), | |
("u2","purchase","nexus"), | |
("u2","purchase","galaxy"), | |
("u3","purchase","surface"), | |
("u4","purchase","iphone"), | |
("u4","purchase","galaxy"), | |
("u1","category-browse","phones"), | |
("u1","category-browse","electronics"), | |
("u1","category-browse","service"), | |
("u2","category-browse","accessories"), | |
("u2","category-browse","tablets"), | |
("u3","category-browse","accessories"), | |
("u3","category-browse","service"), | |
("u4","category-browse","phones"), | |
("u4","category-browse","tablets")) ) | |
import org.apache.mahout.math.indexeddataset.{IndexedDataset, BiDictionary} | |
import org.apache.mahout.sparkbindings.indexeddataset.IndexedDatasetSpark | |
val purchasesIDS = IndexedDatasetSpark.apply(inputRDD.filter(_._2 == "purchase").map(o => (o._1, o._3)))(sc) | |
val browseIDS = IndexedDatasetSpark.apply(inputRDD.filter(_._2 == "category-browse").map(o => (o._1, o._3)))(sc) | |
import org.apache.mahout.math.cf.SimilarityAnalysis | |
val llrDrmList = SimilarityAnalysis.cooccurrencesIDSs(Array(purchasesIDS, browseIDS), | |
randomSeed = 1234, | |
maxInterestingItemsPerThing = 3, | |
maxNumInteractions = 4) | |
val llrAtA = llrDrmList(0).matrix.collect | |
/** | |
llrAtA: org.apache.mahout.math.Matrix = | |
{ | |
0 => {4:1.7260924347106847} | |
1 => {} | |
2 => {3:1.7260924347106847} | |
3 => {2:1.7260924347106847} | |
4 => {0:1.7260924347106847} | |
} | |
*/ | |
val llrAtB = llrDrmList(1).matrix.collect | |
/** | |
llrAtB: org.apache.mahout.math.Matrix = | |
{ | |
0 => {3:5.545177444479561} | |
1 => {0:1.7260924347106847,1:1.7260924347106847} | |
2 => {2:5.545177444479561,4:1.7260924347106847} | |
3 => {1:1.7260924347106847,2:1.7260924347106847,4:4.498681156950466} | |
4 => {0:1.7260924347106847,3:1.7260924347106847} | |
} | |
**/ | |
// A little Scala-Fu for pretty printing | |
import org.apache.mahout.math.scalabindings.MahoutCollections._ | |
import collection._ | |
import JavaConversions._ | |
println("LLR of AtA") | |
println("I.e. Users tend to convert on product X who also buy product Y- Greater is better") | |
for (row <- llrAtA) { | |
println(purchasesIDS.columnIDs.inverse(row.index())) | |
for (e <- row.nonZeroes()) { | |
println(s"--${purchasesIDS.columnIDs.inverse(e.index())} : ${e.get()}") | |
} | |
} | |
/** | |
galaxy | |
--nexus : 1.7260924347106847 | |
surface | |
iphone | |
--ipad : 1.7260924347106847 | |
ipad | |
--iphone : 1.7260924347106847 | |
nexus | |
--galaxy : 1.7260924347106847 | |
*/ | |
println("LLR of AtB") | |
for (row <- llrAtB) { | |
println(purchasesIDS.columnIDs.inverse(row.index())) | |
for (e <- row.nonZeroes()) { | |
println(s"--${browseIDS.columnIDs.inverse(e.index())} : ${e.get()}") | |
} | |
} | |
/** | |
iphone | |
--phones : 5.545177444479561 | |
--electronics : 1.7260924347106847 | |
ipad | |
--phones : 1.7260924347106847 | |
--electronics : 4.498681156950466 | |
--service : 1.7260924347106847 | |
nexus | |
--accessories : 1.7260924347106847 | |
--tablets : 1.7260924347106847 | |
galaxy | |
--tablets : 5.545177444479561 | |
surface | |
--accessories : 1.7260924347106847 | |
--service : 1.7260924347106847 | |
*/ | |
/** | |
Consider an anonymous user who has browsed phones, electronics, and service | |
**/ | |
browseIDS.columnIDs | |
// res41: org.apache.mahout.math.indexeddataset.BiDictionary = Map(tablets -> 3, service -> 1, phones -> 2, electronics -> 4, accessories -> 0) | |
val anonBrowserHxVec = svec( (browseIDS.columnIDs("phones"), 1) :: | |
(browseIDS.columnIDs("electronics"), 1) :: | |
(browseIDS.columnIDs("service"), 1) :: Nil, | |
cardinality = browseIDS.columnIDs.size) | |
val anonPurchaseHxVec = svec( (purchasesIDS.columnIDs("iphone"), 1) :: | |
(purchasesIDS.columnIDs("ipad"), 1) :: Nil, | |
cardinality = purchasesIDS.columnIDs.size) | |
val anonRecsVec = llrAtA %*% anonPurchaseHxVec + llrAtB %*% anonBrowserHxVec | |
for (e <- anonRecsVec.nonZeroes()) { | |
println(s"${purchasesIDS.columnIDs.inverse(e.index())} : ${e.get()}") | |
} | |
/** | |
surface : 1.7260924347106847 | |
iphone : 8.99736231390093 | |
ipad : 9.67695846108252 | |
*/ | |
import org.apache.mahout.math.scalabindings.MahoutCollections._ | |
for (item <- anonRecsVec.toMap.keys.filterNot(anonPurchaseHxVec.toMap.keys.toSet)){ | |
println(s"${purchasesIDS.columnIDs.inverse(item)} : ${anonRecsVec.get(item).get()}") | |
} | |
/** | |
surface : 1.7260924347106847 | |
**/ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Filter out items already known by the user (converted on typically) and you have one rec
The BiDictionarys have the equivalent of zipWithIndex and better yet there is an RDD[String, String] to IndexedDataset conversion in the form of a companion object apply method. This can be done much quicker I think.