Last active
August 18, 2018 18:11
-
-
Save rayheberer/d852d44031c494144dcbeea90ddb66e9 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class AtariNet(object): | |
# ... | |
# ... | |
def _build_optimization(self): | |
# ... | |
# ... | |
self.advantage = tf.subtract( | |
self.returns, | |
tf.squeeze(tf.stop_gradient(self.value_estimate)), | |
name="advantage") | |
# a2c gradient = policy gradient + value gradient + regularization | |
self.policy_gradient = -tf.reduce_mean( | |
(self.advantage * | |
tf.log(self.action_probability * self.args_probability)), | |
name="policy_gradient") | |
self.value_gradient = -tf.reduce_mean( | |
self.advantage * tf.squeeze(self.value_estimate), | |
name="value_gradient") | |
# only including function identifier entropy, not args | |
self.entropy = tf.reduce_sum( | |
self.function_policy * tf.log(self.function_policy), | |
name="entropy_regularization") | |
self.a2c_gradient = tf.add_n( | |
inputs=[self.policy_gradient, | |
self.value_gradient_strength * self.value_gradient, | |
self.regularization_strength * self.entropy], | |
name="a2c_gradient") | |
self.optimizer = tf.train.RMSPropOptimizer( | |
self.learning_rate).minimize(self.a2c_gradient, | |
global_step=self.global_step) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment