Skip to content

Instantly share code, notes, and snippets.

@rayryeng
Created August 28, 2019 19:29
Show Gist options
  • Save rayryeng/0b4906ef0fd8c82a83cf6414359f9147 to your computer and use it in GitHub Desktop.
Save rayryeng/0b4906ef0fd8c82a83cf6414359f9147 to your computer and use it in GitHub Desktop.
from __future__ import division, print_function
# coding=utf-8
import sys
import os
import glob
import re
import numpy as np
# Keras
from keras.applications.imagenet_utils import preprocess_input, decode_predictions
from keras.models import load_model
from keras.preprocessing import image
# Flask utils
from flask import Flask, redirect, url_for, request, render_template
from werkzeug.utils import secure_filename
from gevent.pywsgi import WSGIServer
# Mod
import tensorflow as tf
# Define a flask app
app = Flask(__name__)
# Model saved with Keras model.save()
MODEL_PATH = 'models/your_model.h5'
# Load your trained model
# model = load_model(MODEL_PATH)
# model._make_predict_function() # Necessary
# print('Model loaded. Start serving...')
# You can also use pretrained model from Keras
# Check https://keras.io/applications/
from keras.applications.resnet50 import ResNet50
model = ResNet50(weights='imagenet')
graph = tf.get_default_graph() # Change
print('Model loaded. Check http://127.0.0.1:5000/')
def model_predict(img_path, model):
img = image.load_img(img_path, target_size=(224, 224))
# Preprocessing the image
x = image.img_to_array(img)
# x = np.true_divide(x, 255)
x = np.expand_dims(x, axis=0)
# Be careful how your trained model deals with the input
# otherwise, it won't make correct prediction!
x = preprocess_input(x, mode='caffe')
with graph.as_default(): # Change
preds = model.predict(x)
return preds
@app.route('/', methods=['GET'])
def index():
# Main page
return render_template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def upload():
if request.method == 'POST':
# Get the file from post request
f = request.files['image']
# Save the file to ./uploads
basepath = os.path.dirname(__file__)
file_path = os.path.join(
basepath, 'uploads', secure_filename(f.filename))
f.save(file_path)
# Make prediction
preds = model_predict(file_path, model)
# Process your result for human
# pred_class = preds.argmax(axis=-1) # Simple argmax
pred_class = decode_predictions(preds, top=1) # ImageNet Decode
result = str(pred_class[0][0][1]) # Convert to string
return result
return None
if __name__ == '__main__':
# app.run(port=5002, debug=True)
# Serve the app with gevent
http_server = WSGIServer(('0.0.0.0', 5000), app)
http_server.serve_forever()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment