Last active
September 8, 2024 23:49
-
-
Save razhangwei/1c64803f6d820d6f5a880c3a54fe61c0 to your computer and use it in GitHub Desktop.
ppo pseudo code
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Pseudocode for estimating advantage function in RLHF using PPO | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
def compute_ppo_loss(policy, old_policy, token_sequences, advantages, returns, clip_epsilon=0.2): | |
""" | |
Compute the PPO loss for language model policy update | |
policy: Current policy (language model) | |
old_policy: Policy used to generate the token sequences | |
token_sequences: List of generated token sequences | |
advantages: Estimated advantages for each token prediction | |
returns: Estimated returns for each token prediction | |
clip_epsilon: PPO clipping parameter | |
""" | |
total_loss = 0 | |
for sequence, sequence_advantages, sequence_returns in zip(token_sequences, advantages, returns): | |
for t in range(len(sequence) - 1): # -1 because we're predicting the next token | |
current_sequence = sequence[:t+1] | |
next_token = sequence[t+1] | |
# Compute log probabilities | |
current_log_prob = policy.log_prob(current_sequence, next_token) | |
old_log_prob = old_policy.log_prob(current_sequence, next_token) | |
# Compute probability ratio | |
ratio = torch.exp(current_log_prob - old_log_prob) | |
# Compute surrogate losses | |
surrogate1 = ratio * sequence_advantages[t] | |
surrogate2 = torch.clamp(ratio, 1 - clip_epsilon, 1 + clip_epsilon) * sequence_advantages[t] | |
# Compute policy loss | |
policy_loss = -torch.min(surrogate1, surrogate2).mean() | |
# Compute entropy bonus (optional, to encourage exploration) | |
entropy = policy.entropy(current_sequence).mean() | |
# Combine losses | |
total_loss += policy_loss - ENTROPY_COEFFICIENT * entropy | |
return total_loss / len(token_sequences) | |
def compute_value_loss(value_function, token_sequences, returns): | |
""" | |
Compute the value function loss | |
value_function: Current value function | |
token_sequences: List of generated token sequences | |
returns: Estimated returns for each token prediction | |
""" | |
total_loss = 0 | |
for sequence, sequence_returns in zip(token_sequences, returns): | |
for t in range(len(sequence)): | |
current_sequence = sequence[:t+1] | |
predicted_value = value_function(current_sequence) | |
actual_return = sequence_returns[t] | |
# Compute MSE loss | |
value_loss = F.mse_loss(predicted_value, actual_return) | |
total_loss += value_loss | |
return total_loss / len(token_sequences) | |
def estimate_advantages(trajectories, reward_model, value_function): | |
""" | |
trajectories: List of (state, action, reward) tuples | |
reward_model: Learned reward function from RLHF | |
value_function: Current estimate of the value function | |
""" | |
advantages = [] | |
returns = [] | |
for trajectory in trajectories: | |
trajectory_advantages = [] | |
trajectory_returns = [] | |
# Compute returns (discounted sum of rewards) | |
R = 0 | |
for t in reversed(range(len(trajectory))): | |
state, action, _ = trajectory[t] | |
# Use the learned reward model to estimate the reward | |
reward = reward_model.predict(state, action) | |
R = reward + GAMMA * R # GAMMA is the discount factor | |
trajectory_returns.insert(0, R) | |
# Estimate advantages | |
for t in range(len(trajectory)): | |
state, _, _ = trajectory[t] | |
if t + 1 < len(trajectory): | |
next_state, _, _ = trajectory[t+1] | |
td_error = trajectory_returns[t] + GAMMA * value_function(next_state) - value_function(state) | |
else: | |
td_error = trajectory_returns[t] - value_function(state) | |
trajectory_advantages.append(td_error) | |
# Normalize advantages (optional, but often helps with training stability) | |
trajectory_advantages = (trajectory_advantages - np.mean(trajectory_advantages)) / (np.std(trajectory_advantages) + 1e-8) | |
advantages.extend(trajectory_advantages) | |
returns.extend(trajectory_returns) | |
return advantages, returns | |
def update_policy_ppo(policy, value_function, trajectories, reward_model): | |
""" | |
Main PPO update loop | |
""" | |
for _ in range(PPO_EPOCHS): | |
# Sample mini-batches of trajectories | |
mini_batches = sample_mini_batches(trajectories) | |
for mini_batch in mini_batches: | |
# Estimate advantages and returns | |
advantages, returns = estimate_advantages(mini_batch, reward_model, value_function) | |
# Compute PPO loss | |
ppo_loss = compute_ppo_loss(policy, mini_batch, advantages) | |
# Update policy | |
policy.update(ppo_loss) | |
# Update value function | |
value_loss = compute_value_loss(value_function, mini_batch, returns) | |
value_function.update(value_loss) | |
# Main training loop | |
reward_model = train_reward_model(human_feedback_data) | |
policy = initialize_policy() | |
value_function = initialize_value_function() | |
for iteration in range(NUM_ITERATIONS): | |
trajectories = generate_trajectories(policy) | |
update_policy_ppo(policy, value_function, trajectories, reward_model) | |
# Print the names of any files created or modified during execution: | |
print("No files were created or modified during the execution of this pseudocode.") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment