- PyTorch implementations of popular LLMs (Llama, Gemma, Mistral, Phi, Qwen)
- Training recipes for full fine-tuning, LoRA, QLoRA, DPO, PPO, QAT, knowledge distillation
- Memory efficiency and performance improvements
- YAML configs for easy recipe configuration
- Support for various dataset formats and prompt templates
Training | Fine-tuning Method |
---|---|
Distributed (1-8 GPUs) | Full, LoRA |
Single Device / Low Memory (1 GPU) | Full, LoRA + QLoRA |
Single Device (1 GPU) | DPO, RLHF with PPO |
- List available configs:
tune ls
- Copy a config:
tune cp <source> <destination>
- Download a model:
tune download <model_name> --output-dir <dir> --hf-token <token>
- Run a recipe:
tune run <recipe_name> --config <config_file>
- Validate a config:
tune validate <config_file>
1. Command-line overrides:
tune run lora_finetune_single_device \
--config llama2/7B_lora_single_device \
batch_size=8 \
enable_activation_checkpointing=True \
max_steps_per_epoch=128
2. Local copy modification:
tune cp llama3_1/8B_full ./my_custom_config.yaml
tune run full_finetune_distributed --config ./my_custom_config.yaml
- Comet ML: Add
CometLogger
to your config for experiment tracking - EleutherAI's Eval Harness: Use the
eleuther_eval
recipe for model evaluation
- Llama 2 (7B, 13B, 70B)
- Llama 3.1 (8B, 70B, 405B)
- Llama 3.2 (1B, 3B, 11B Vision)
- Mistral (7B)
- Gemma (2B, 7B)
- Phi (1.5B, 2.7B)
- Qwen (1.8B, 7B, 14B, 72B)
- Use single-device configs for memory-constrained setups
- Leverage memory optimizations like activation checkpointing
- Experiment with different fine-tuning methods based on your hardware and dataset size
- Utilize the CLI for easy config management and recipe execution
Remember to check the official documentation for detailed information on specific features and advanced usage[1][2][4][5].
Citations: [1] https://pytorch.org/torchtune/ [2] https://github.com/pytorch/torchtune/blob/main/README.md [3] https://www.comet.com/docs/v2/integrations/third-party-tools/torchtune/ [4] https://pytorch.org/torchtune/stable/tutorials/e2e_flow.html [5] https://github.com/pytorch/torchtune/