-
-
Save rbeucher/9b362b0dbe6a84394ae8b8814cdd7088 to your computer and use it in GitHub Desktop.
Spießbürger's stereonet: Fixed coordinate conversions. See http://stackoverflow.com/questions/27622007
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib | |
from matplotlib.axes import Axes | |
from matplotlib.patches import Circle | |
from matplotlib.path import Path | |
from matplotlib.ticker import NullLocator, Formatter, FixedLocator | |
from matplotlib.transforms import Affine2D, BboxTransformTo, Transform | |
from matplotlib.projections import register_projection | |
import matplotlib.spines as mspines | |
import matplotlib.axis as maxis | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from numpy import pi, sin, cos, sqrt, arctan2 | |
# This example projection class is rather long, but it is designed to | |
# illustrate many features, not all of which will be used every time. | |
# It is also common to factor out a lot of these methods into common | |
# code used by a number of projections with similar characteristics | |
# (see geo.py). | |
class LambertAxes(Axes): | |
""" | |
A custom class for the Lambert azimuthal equal-area projection | |
with equatorial aspect. In geosciences this is also referre to | |
as a "Schmidt plot". For more information see: | |
http://pubs.er.usgs.gov/publication/pp1395 | |
""" | |
# The projection must specify a name. This will be used be the | |
# user to select the projection, i.e. ``subplot(111, | |
# projection='lmbrt_equ_area_equ_aspect')``. | |
name = 'lmbrt_equ_area_equ_aspect' | |
def __init__(self, *args, **kwargs): | |
Axes.__init__(self, *args, **kwargs) | |
self.set_aspect(1, adjustable='box', anchor='C') | |
self.cla() | |
def _init_axis(self): | |
self.xaxis = maxis.XAxis(self) | |
self.yaxis = maxis.YAxis(self) | |
# Do not register xaxis or yaxis with spines -- as done in | |
# Axes._init_axis() -- until LambertAxes.xaxis.cla() works. | |
# self.spines['hammer'].register_axis(self.yaxis) | |
self._update_transScale() | |
def cla(self): | |
""" | |
Override to set up some reasonable defaults. | |
""" | |
# Don't forget to call the base class | |
Axes.cla(self) | |
# Set up a default grid spacing | |
self.set_longitude_grid(10) | |
self.set_latitude_grid(10) | |
self.set_longitude_grid_ends(80) | |
# Turn off minor ticking altogether | |
self.xaxis.set_minor_locator(NullLocator()) | |
self.yaxis.set_minor_locator(NullLocator()) | |
# Do not display ticks -- we only want gridlines and text | |
self.xaxis.set_ticks_position('none') | |
self.yaxis.set_ticks_position('none') | |
# The limits on this projection are fixed -- they are not to | |
# be changed by the user. This makes the math in the | |
# transformation itself easier, and since this is a toy | |
# example, the easier, the better. | |
Axes.set_xlim(self, -pi/2, pi/2) | |
Axes.set_ylim(self, -pi, pi) | |
def _set_lim_and_transforms(self): | |
""" | |
This is called once when the plot is created to set up all the | |
transforms for the data, text and grids. | |
""" | |
# There are three important coordinate spaces going on here: | |
# | |
# 1. Data space: The space of the data itself | |
# | |
# 2. Axes space: The unit rectangle (0, 0) to (1, 1) | |
# covering the entire plot area. | |
# | |
# 3. Display space: The coordinates of the resulting image, | |
# often in pixels or dpi/inch. | |
# This function makes heavy use of the Transform classes in | |
# ``lib/matplotlib/transforms.py.`` For more information, see | |
# the inline documentation there. | |
# The goal of the first two transformations is to get from the | |
# data space (in this case longitude and latitude) to axes | |
# space. It is separated into a non-affine and affine part so | |
# that the non-affine part does not have to be recomputed when | |
# a simple affine change to the figure has been made (such as | |
# resizing the window or changing the dpi). | |
# 1) The core transformation from data space into | |
# rectilinear space defined in the LambertEqualAreaTransform class. | |
self.transProjection = self.LambertEqualAreaTransform() | |
# 2) The above has an output range that is not in the unit | |
# rectangle, so scale and translate it so it fits correctly | |
# within the axes. The peculiar calculations of xscale and | |
# yscale are specific to a Aitoff-Hammer projection, so don't | |
# worry about them too much. | |
xscale = sqrt(2.0) * sin(0.5 * pi) | |
yscale = sqrt(2.0) * sin(0.5 * pi) | |
self.transAffine = Affine2D() \ | |
.scale(0.5 / xscale, 0.5 / yscale) \ | |
.translate(0.5, 0.5) | |
# 3) This is the transformation from axes space to display | |
# space. | |
self.transAxes = BboxTransformTo(self.bbox) | |
# Now put these 3 transforms together -- from data all the way | |
# to display coordinates. Using the '+' operator, these | |
# transforms will be applied "in order". The transforms are | |
# automatically simplified, if possible, by the underlying | |
# transformation framework. | |
self.transData = \ | |
self.transProjection + \ | |
self.transAffine + \ | |
self.transAxes | |
# The main data transformation is set up. Now deal with | |
# gridlines and tick labels. | |
# Longitude gridlines and ticklabels. The input to these | |
# transforms are in display space in x and axes space in y. | |
# Therefore, the input values will be in range (-xmin, 0), | |
# (xmax, 1). The goal of these transforms is to go from that | |
# space to display space. The tick labels will be offset 4 | |
# pixels from the equator. | |
self._xaxis_pretransform = \ | |
Affine2D() \ | |
.scale(1.0, pi) \ | |
.translate(0.0, -pi) | |
self._xaxis_transform = \ | |
self._xaxis_pretransform + \ | |
self.transData | |
self._xaxis_text1_transform = \ | |
Affine2D().scale(1.0, 0.0) + \ | |
self.transData + \ | |
Affine2D().translate(0.0, 4.0) | |
self._xaxis_text2_transform = \ | |
Affine2D().scale(1.0, 0.0) + \ | |
self.transData + \ | |
Affine2D().translate(0.0, -4.0) | |
# Now set up the transforms for the latitude ticks. The input to | |
# these transforms are in axes space in x and display space in | |
# y. Therefore, the input values will be in range (0, -ymin), | |
# (1, ymax). The goal of these transforms is to go from that | |
# space to display space. The tick labels will be offset 4 | |
# pixels from the edge of the axes ellipse. | |
yaxis_stretch = Affine2D().scale(pi * 2.0, 1.0).translate(-pi, 0.0) | |
yaxis_space = Affine2D().scale(1.0, 1.0) | |
self._yaxis_transform = \ | |
yaxis_stretch + \ | |
self.transData | |
yaxis_text_base = \ | |
yaxis_stretch + \ | |
self.transProjection + \ | |
(yaxis_space + \ | |
self.transAffine + \ | |
self.transAxes) | |
self._yaxis_text1_transform = \ | |
yaxis_text_base + \ | |
Affine2D().translate(-8.0, 0.0) | |
self._yaxis_text2_transform = \ | |
yaxis_text_base + \ | |
Affine2D().translate(8.0, 0.0) | |
def get_xaxis_transform(self,which='grid'): | |
""" | |
Override this method to provide a transformation for the | |
x-axis grid and ticks. | |
""" | |
assert which in ['tick1','tick2','grid'] | |
return self._xaxis_transform | |
def get_xaxis_text1_transform(self, pixelPad): | |
""" | |
Override this method to provide a transformation for the | |
x-axis tick labels. | |
Returns a tuple of the form (transform, valign, halign) | |
""" | |
return self._xaxis_text1_transform, 'bottom', 'center' | |
def get_xaxis_text2_transform(self, pixelPad): | |
""" | |
Override this method to provide a transformation for the | |
secondary x-axis tick labels. | |
Returns a tuple of the form (transform, valign, halign) | |
""" | |
return self._xaxis_text2_transform, 'top', 'center' | |
def get_yaxis_transform(self,which='grid'): | |
""" | |
Override this method to provide a transformation for the | |
y-axis grid and ticks. | |
""" | |
assert which in ['tick1','tick2','grid'] | |
return self._yaxis_transform | |
def get_yaxis_text1_transform(self, pixelPad): | |
""" | |
Override this method to provide a transformation for the | |
y-axis tick labels. | |
Returns a tuple of the form (transform, valign, halign) | |
""" | |
return self._yaxis_text1_transform, 'center', 'right' | |
def get_yaxis_text2_transform(self, pixelPad): | |
""" | |
Override this method to provide a transformation for the | |
secondary y-axis tick labels. | |
Returns a tuple of the form (transform, valign, halign) | |
""" | |
return self._yaxis_text2_transform, 'center', 'left' | |
def _gen_axes_patch(self): | |
""" | |
Override this method to define the shape that is used for the | |
background of the plot. It should be a subclass of Patch. | |
In this case, it is a Circle (that may be warped by the axes | |
transform into an ellipse). Any data and gridlines will be | |
clipped to this shape. | |
""" | |
return Circle((0.5, 0.5), 0.5) | |
def _gen_axes_spines(self): | |
return {'lmbrt_equ_area_equ_aspect':mspines.Spine.circular_spine(self, | |
(0.5, 0.5), 0.5)} | |
# Prevent the user from applying scales to one or both of the | |
# axes. In this particular case, scaling the axes wouldn't make | |
# sense, so we don't allow it. | |
def set_xscale(self, *args, **kwargs): | |
if args[0] != 'linear': | |
raise NotImplementedError | |
Axes.set_xscale(self, *args, **kwargs) | |
def set_yscale(self, *args, **kwargs): | |
if args[0] != 'linear': | |
raise NotImplementedError | |
Axes.set_yscale(self, *args, **kwargs) | |
# Prevent the user from changing the axes limits. In our case, we | |
# want to display the whole sphere all the time, so we override | |
# set_xlim and set_ylim to ignore any input. This also applies to | |
# interactive panning and zooming in the GUI interfaces. | |
def set_xlim(self, *args, **kwargs): | |
Axes.set_xlim(self, -pi, pi) | |
Axes.set_ylim(self, -pi, pi) | |
set_ylim = set_xlim | |
def format_coord(self, lon, lat): | |
""" | |
Override this method to change how the values are displayed in | |
the status bar. | |
In this case, we want them to be displayed in degrees N/S/E/W. | |
""" | |
lon = np.degrees(lon) | |
lat = np.degrees(lat) | |
#if lat >= 0.0: | |
# ns = 'N' | |
#else: | |
# ns = 'S' | |
#if lon >= 0.0: | |
# ew = 'E' | |
#else: | |
# ew = 'W' | |
return "{0} / {1}".format(round(lon,1), round(lat,1)) | |
class DegreeFormatter(Formatter): | |
""" | |
This is a custom formatter that converts the native unit of | |
radians into (truncated) degrees and adds a degree symbol. | |
""" | |
def __init__(self, round_to=1.0): | |
self._round_to = round_to | |
def __call__(self, x, pos=None): | |
degrees = (x / pi) * 180.0 | |
degrees = round(degrees / self._round_to) * self._round_to | |
return "%d\u00b0" % degrees | |
def set_longitude_grid(self, degrees): | |
""" | |
Set the number of degrees between each longitude grid. | |
This is an example method that is specific to this projection | |
class -- it provides a more convenient interface to set the | |
ticking than set_xticks would. | |
""" | |
# Set up a FixedLocator at each of the points, evenly spaced | |
# by degrees. | |
number = (360.0 / degrees) + 1 | |
self.xaxis.set_major_locator( | |
plt.FixedLocator( | |
np.linspace(-pi, pi, number, True)[1:-1])) | |
# Set the formatter to display the tick labels in degrees, | |
# rather than radians. | |
self.xaxis.set_major_formatter(self.DegreeFormatter(degrees)) | |
def set_latitude_grid(self, degrees): | |
""" | |
Set the number of degrees between each longitude grid. | |
This is an example method that is specific to this projection | |
class -- it provides a more convenient interface than | |
set_yticks would. | |
""" | |
# Set up a FixedLocator at each of the points, evenly spaced | |
# by degrees. | |
number = (180.0 / degrees) + 1 | |
self.yaxis.set_major_locator( | |
FixedLocator( | |
np.linspace(-pi / 2.0, pi / 2.0, number, True)[1:-1])) | |
# Set the formatter to display the tick labels in degrees, | |
# rather than radians. | |
self.yaxis.set_major_formatter(self.DegreeFormatter(degrees)) | |
def set_longitude_grid_ends(self, degrees): | |
""" | |
Set the latitude(s) at which to stop drawing the longitude grids. | |
Often, in geographic projections, you wouldn't want to draw | |
longitude gridlines near the poles. This allows the user to | |
specify the degree at which to stop drawing longitude grids. | |
This is an example method that is specific to this projection | |
class -- it provides an interface to something that has no | |
analogy in the base Axes class. | |
""" | |
longitude_cap = degrees * (pi / 180.0) | |
# Change the xaxis gridlines transform so that it draws from | |
# -degrees to degrees, rather than -pi to pi. | |
self._xaxis_pretransform \ | |
.clear() \ | |
.scale(1.0, longitude_cap * 2.0) \ | |
.translate(0.0, -longitude_cap) | |
def get_data_ratio(self): | |
""" | |
Return the aspect ratio of the data itself. | |
This method should be overridden by any Axes that have a | |
fixed data ratio. | |
""" | |
return 1.0 | |
# Interactive panning and zooming is not supported with this projection, | |
# so we override all of the following methods to disable it. | |
def can_zoom(self): | |
""" | |
Return True if this axes support the zoom box | |
""" | |
return False | |
def start_pan(self, x, y, button): | |
pass | |
def end_pan(self): | |
pass | |
def drag_pan(self, button, key, x, y): | |
pass | |
class LambertEqualAreaTransform(Transform): | |
""" | |
The basic transformation class. | |
""" | |
input_dims = 2 | |
output_dims = 2 | |
is_separable = False | |
def transform_non_affine(self, ll): | |
""" | |
Override the transform_non_affine method to implement the custom | |
transform. | |
The input and output are Nx2 numpy arrays. | |
""" | |
xi = ll[:, 0:1] | |
yi = ll[:, 1:2] | |
k = 1 + np.absolute(cos(yi) * cos(xi)) | |
k = 2 / k | |
if np.isposinf(k[0]) == True: | |
k[0] = 1e+15 | |
if np.isneginf(k[0]) == True: | |
k[0] = -1e+15 | |
if k[0] == 0: | |
k[0] = 1e-15 | |
k = sqrt(k) | |
x = k * cos(yi) * sin(xi) | |
y = k * sin(yi) | |
return np.concatenate((x, y), 1) | |
# This is where things get interesting. With this projection, | |
# straight lines in data space become curves in display space. | |
# This is done by interpolating new values between the input | |
# values of the data. Since ``transform`` must not return a | |
# differently-sized array, any transform that requires | |
# changing the length of the data array must happen within | |
# ``transform_path``. | |
def transform_path_non_affine(self, path): | |
ipath = path.interpolated(path._interpolation_steps) | |
return Path(self.transform(ipath.vertices), ipath.codes) | |
transform_path_non_affine.__doc__ = \ | |
Transform.transform_path_non_affine.__doc__ | |
if matplotlib.__version__ < '1.2': | |
# Note: For compatibility with matplotlib v1.1 and older, you'll | |
# need to explicitly implement a ``transform`` method as well. | |
# Otherwise a ``NotImplementedError`` will be raised. This isn't | |
# necessary for v1.2 and newer, however. | |
transform = transform_non_affine | |
# Similarly, we need to explicitly override ``transform_path`` if | |
# compatibility with older matplotlib versions is needed. With v1.2 | |
# and newer, only overriding the ``transform_path_non_affine`` | |
# method is sufficient. | |
transform_path = transform_path_non_affine | |
transform_path.__doc__ = Transform.transform_path.__doc__ | |
def inverted(self): | |
return LambertAxes.InvertedLambertEqualAreaTransform() | |
inverted.__doc__ = Transform.inverted.__doc__ | |
class InvertedLambertEqualAreaTransform(Transform): | |
#This is not working yet !!! | |
input_dims = 2 | |
output_dims = 2 | |
is_separable = False | |
def transform_non_affine(self, xy): | |
x = xy[:, 0:1] | |
y = xy[:, 1:2] | |
#quarter_x = 0.25 * x | |
#half_y = 0.5 * y | |
#z = sqrt(1.0 - quarter_x*quarter_x - half_y*half_y) | |
#longitude = 2 * np.arctan((z*x) / (2.0 * (2.0*z*z - 1.0))) | |
r = sqrt(2) | |
p = sqrt(x**2 * y**2) | |
c = 2 * np.arcsin(p / (2 * r)) | |
phi1 = pi/2 | |
lbd0 = 0 | |
#print(x,y) | |
if y[0] == 0: | |
lat = 0 | |
else: | |
lat = np.arcsin(cos(c) * sin(phi1) + (y * sin(c) * cos(phi1 / p))) | |
#if phi == phi1: | |
# lon = lbd0 + np.arctan(x / (-y)) | |
#elif phi == -phi1: | |
# lon = lbd0 + np.arctan(x / y) | |
#else: | |
# lon = lbd0 + np.arctan(x * sin(c) / (p * cos(phi1) * cos(c) - y * sin(phi1) * sin(c))) | |
if x[0] == 0: | |
lon = 0 | |
else: | |
lon = lbd0 + np.arctan(x * sin(c) / (p * cos(phi1) * cos(c) - y * sin(phi1) * sin(c))) | |
return np.concatenate((lon, lat), 1) | |
transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ | |
# As before, we need to implement the "transform" method for | |
# compatibility with matplotlib v1.1 and older. | |
if matplotlib.__version__ < '1.2': | |
transform = transform_non_affine | |
def inverted(self): | |
# The inverse of the inverse is the original transform... ;) | |
return LambertAxes.LambertEqualAreaTransform() | |
inverted.__doc__ = Transform.inverted.__doc__ | |
# Now register the projection with matplotlib so the user can select | |
# it. | |
register_projection(LambertAxes) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from numpy import pi, sin, cos, sqrt, tan, arctan2, arccos | |
#Internal imports | |
import projection | |
def transformVector(geom, raxis, rot): | |
""" | |
Input: | |
geom: single point geometry (vector) | |
raxis: rotation axis as a vector (vector) | |
([0][1][2]) = (x,y,z) = (Longitude, Latitude, Down) | |
rot: rotation in radian | |
Returns: | |
Array: a vector that has been transformed | |
""" | |
sr = sin(rot) | |
cr = cos(rot) | |
omcr = 1.0 - cr | |
tf = np.array([ | |
[cr + raxis[0]**2 * omcr, | |
-raxis[2] * sr + raxis[0] * raxis[1] * omcr, | |
raxis[1] * sr + raxis[0] * raxis[2] * omcr], | |
[raxis[2] * sr + raxis[1] * raxis[0] * omcr, | |
cr + raxis[1]**2 * omcr, | |
-raxis[0] * sr + raxis[1] * raxis[2] * omcr], | |
[-raxis[1] * sr + raxis[2] * raxis[0] * omcr, | |
raxis[0] * sr + raxis[2] * raxis[1] * omcr, | |
cr + raxis[2]**2 * omcr]]) | |
ar = np.dot(geom, tf) | |
return ar | |
def sphericalToVector(inp_ar): | |
""" | |
Convert a spherical measurement into a vector in cartesian space | |
[0] = x (+) east (-) west | |
[1] = y (+) north (-) south | |
[2] = z (+) down | |
""" | |
ar = np.array([0.0, 0.0, 0.0]) | |
ar[0] = -sin(inp_ar[1]) | |
ar[1] = sin(inp_ar[0]) * cos(inp_ar[1]) | |
ar[2] = cos(inp_ar[0]) * cos(inp_ar[1]) | |
return ar | |
def vectorToGeogr(vect): | |
""" | |
Returns: | |
Array with the components [0] longitude, [1] latitude | |
""" | |
ar = np.array([0.0, 0.0]) | |
ar[0] = np.arctan2(vect[1], vect[2]) | |
ar[1] = np.arcsin(-vect[0] / np.linalg.norm(vect)) | |
return ar | |
def plotPoint(dip): | |
""" | |
Testfunction for converting, transforming and plotting a point | |
""" | |
plt.subplot(111, projection="lmbrt_equ_area_equ_aspect") | |
#Convert to radians | |
dip_rad = np.radians(dip) | |
#Set rotation to azimuth and convert dip to latitude on north-south axis | |
rot = dip_rad[0] | |
dip_lat = pi/2 - dip_rad[1] | |
plt.plot(0, dip_lat, "ro") | |
print(dip_lat, rot) | |
#Convert the dip into a vector along the north-south axis | |
#x = 0, y = dip | |
vect = sphericalToVector([0, dip_lat]) | |
print(vect, np.linalg.norm(vect)) | |
#Transfrom the dip to its proper azimuth | |
tvect = transformVector(vect, [0,0,1], rot) | |
print(tvect, np.linalg.norm(tvect)) | |
#Transform the vector back to geographic coordinates | |
geo = vectorToGeogr(tvect) | |
print(geo) | |
plt.plot(geo[0], geo[1], "bo") | |
plt.grid(True) | |
plt.show() | |
datapoint = np.array([090.0,30]) | |
plotPoint(datapoint) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment