Last active
July 23, 2018 00:33
-
-
Save rcanepa/961529fcd27827c756e3a681562e7e16 to your computer and use it in GitHub Desktop.
Numpy
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Element wise sum and multiplication | |
np.array([3, 1]) + np.array([2, 1]) # => np.array([5, 1]) | |
np.array([3, 1]) * np.array([2, 1]) # => np.array([6, 1]) | |
# Square root | |
np.sqrt(np.array([1,2])) # => array([1, 1.41421356]) | |
# Magnitude of a vector | |
np.linalg.norm(np.array([1, 2])) # => 2.23606797749979 | |
# Dot product between two arrays | |
np.array([2, 1]).dot(np.array([1, 2])) # => 4 | |
# Return the sum of every element of the array | |
np.array([2, 1]).sum() # => 4 | |
# Create an array of 10 zeros | |
np.zeros(10) | |
# Create a 2D array of `rows` rows and `columns` columns filled with zeros | |
np.zeros((rows, columns)) | |
# Create an array of 10 ones | |
np.ones(10) | |
# Create a 2D array of `rows` rows and `columns` columns filled with ones | |
np.ones((rows, columns)) | |
# Create a 2D array of `rows` rows and `columns` columns filled with random | |
# numbers between 0 and 1 | |
np.random.random((rows, columns)) | |
# Create a 2D array of `rows` rows and `columns` columns filled with random | |
# from a Gaussian distribution with mean 0 and var 1 | |
# Notice that in this case, we are not passing a tuple | |
np.random.randn(rows, columns) | |
# Matrices multiplication | |
# Inner dimensions must match | |
# We can multiply A(2, 3) by B(3, 3) but we can't B(3, 3) * A(2, 3) | |
# In numpy, * does an element wise type of multiplication | |
A.dot(A) | |
# array([[ 7, 10], | |
# [15, 22]]) | |
# Matrix inverse | |
A = np.array([[1,2], [3,4]]) | |
# array([[1, 2], | |
# [3, 4]]) | |
np.linalg.inv(A) | |
# array([[-2. , 1. ], | |
# [ 1.5, -0.5]]) | |
# A * Ainv = identity matrix (1 on the diagonal, zeros in the rest) | |
A.dot(np.linalg.inv(A)) | |
# array([[1.0000000e+00, 0.0000000e+00], | |
# [8.8817842e-16, 1.0000000e+00]]) | |
# Matrix determinant | |
np.linalg.det(A) | |
# -2.0000000000000004 | |
# Matrix diagonal | |
np.diag(A) | |
# array([1, 4]) | |
# Create a diagonal matrix (the rest are zeros) | |
np.diag([1,2,3]) | |
# array([[1, 0, 0], | |
# [0, 2, 0], | |
# [0, 0, 3]]) | |
# Outer product between arrays | |
a = np.array([1,2]) | |
b = np.array([3,4]) | |
np.outer(a, b) | |
# array([[3, 4], | |
# [6, 8]]) | |
# Matrix trace (sum of the diagonal) | |
np.trace(A) | |
# 5 | |
# Eigenvalues and Eigenvectors with eig and eigh | |
X = np.random.randn(100, 3) # for instance: 100 samples and 3 features | |
cov = np.cov(X.T) # covariance matrix | |
cov.shape | |
# (3, 3) | |
np.linalg.eig(cov) | |
# (array([1.27646852, 0.63402007, 0.92477144]), | |
# array([[-0.59240802, -0.74197816, 0.31388079], | |
# [-0.68828838, 0.66860896, 0.28146255], | |
# [ 0.41870257, 0.04929983, 0.90678425]])) | |
np.linalg.eigh(cov) | |
# (array([0.63402007, 0.92477144, 1.27646852]), | |
# array([[ 0.74197816, 0.31388079, -0.59240802], | |
# [-0.66860896, 0.28146255, -0.68828838], | |
# [-0.04929983, 0.90678425, 0.41870257]])) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment