Created
May 22, 2019 22:21
-
-
Save rdblue/6bc140a575fdf266beb2710ad9dbed8f to your computer and use it in GitHub Desktop.
Prototype DataFrameWriter for v2 tables
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* Interface used to write a [[Dataset]] to external storage using the v2 API. | |
* | |
* @since 3.0.0 | |
*/ | |
@Experimental | |
final class DataFrameWriterV2[T] private[sql](table: String, ds: Dataset[T]) | |
extends CreateTableWriter[T] with LookupCatalog { | |
import org.apache.spark.sql.catalog.v2.CatalogV2Implicits._ | |
private val df = ds.toDF() | |
private val sparkSession = ds.sparkSession | |
private val tableName = sparkSession.sessionState.sqlParser.parseMultipartIdentifier(table) | |
private val logicalPlan = df.queryExecution.logical | |
private var provider: Option[String] = None | |
private val options = new mutable.HashMap[String, String]() | |
private var partitioning: Option[Seq[Transform]] = None | |
/** | |
* Specifies a provider for the underlying output data source. Spark's default catalog supports | |
* "parquet", "json", etc. | |
* | |
* @since 3.0.0 | |
*/ | |
def using(provider: String): DataFrameWriterV2[T] = { | |
this.provider = Some(provider) | |
this | |
} | |
/** | |
* Add a write option. | |
* | |
* @since 3.0.0 | |
*/ | |
def option(key: String, value: String): DataFrameWriterV2[T] = { | |
this.options.put(key, value) | |
this | |
} | |
def partitionBy(columns: Column*): CreateTableWriter[T] = { | |
val asTransforms = columns.map(_.expr).map { | |
case Years(attr: Attribute) => | |
LogicalExpressions.years(attr.name) | |
case Months(attr: Attribute) => | |
LogicalExpressions.months(attr.name) | |
case Days(attr: Attribute, _: DateType, _) => | |
LogicalExpressions.days(attr.name) | |
case Hours(attr: Attribute, _) => | |
LogicalExpressions.hours(attr.name) | |
case attr: Attribute => | |
LogicalExpressions.identity(attr.name) | |
case expr => | |
throw new AnalysisException(s"Invalid partition transformation: ${expr.sql}") | |
} | |
this.partitioning = Some(asTransforms) | |
this | |
} | |
def create(): Unit = { | |
val CatalogObjectIdentifier(maybeCatalog, identifier) = tableName | |
val catalog = maybeCatalog | |
.getOrElse(throw new AnalysisException( | |
s"No catalog specified for table ${identifier.quoted} and no default catalog is set")) | |
.asTableCatalog | |
// TODO: Maybe this should be a different statement instead? CreateTableFromDataFrame? | |
runCommand("create") { | |
CreateTableAsSelect( | |
catalog, | |
identifier, | |
partitioning.getOrElse(Seq.empty), | |
logicalPlan, | |
properties = Map.empty[String, String], | |
writeOptions = options.toMap, | |
ignoreIfExists = false) | |
} | |
} | |
def append(): Unit = { | |
runCommand("append") { | |
AppendData.byName(UnresolvedRelation(tableName), logicalPlan) | |
} | |
} | |
def overwrite(condition: Column): Unit = { | |
runCommand("overwrite") { | |
OverwriteByExpression.byName(UnresolvedRelation(tableName), logicalPlan, condition.expr) | |
} | |
} | |
def overwritePartitions(): Unit = { | |
runCommand("overwritePartitions") { | |
OverwritePartitionsDynamic.byName(UnresolvedRelation(tableName), logicalPlan) | |
} | |
} | |
/** | |
* Wrap a DataFrameWriter action to track the QueryExecution and time cost, then report to the | |
* user-registered callback functions. | |
*/ | |
private def runCommand(name: String)(command: LogicalPlan): Unit = { | |
val qe = sparkSession.sessionState.executePlan(command) | |
// call `QueryExecution.toRDD` to trigger the execution of commands. | |
SQLExecution.withNewExecutionId(sparkSession, qe, Some(name))(qe.toRdd) | |
} | |
override protected def lookupCatalog: Option[String => CatalogPlugin] = | |
Some(sparkSession.catalog(_)) | |
} | |
private trait WriteConfigMethods[R] { | |
def using(provider: String): R | |
def option(key: String, value: String): R | |
} | |
trait CreateTableWriter[T] extends WriteConfigMethods[CreateTableWriter[T]] { | |
def create(): Unit | |
def partitionBy(columns: Column*): CreateTableWriter[T] | |
} | |
class Demo(df: DataFrame) { | |
import df.sparkSession.implicits._ | |
import org.apache.spark.sql.functions._ | |
def spark: SparkSession = df.sparkSession | |
implicit class DSv2Write[T](ds: Dataset[T]) { | |
def writeTo(table: String): DataFrameWriterV2[T] = { | |
new DataFrameWriterV2[T](table, ds) | |
} | |
} | |
def test(): Unit = { | |
df.writeTo("db.table").option("key", "value").append() | |
df.writeTo("db.table").option("key", "value").overwrite($"day" === "2019-01-01") | |
df.writeTo("db.table").partitionBy(month($"ts")).using("test").create() | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment