Created
December 17, 2020 22:41
-
-
Save rdisipio/6393e22c5b8efeee3adf9645fde06ba5 to your computer and use it in GitHub Desktop.
QLSTM POS Tagger
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class LSTMTagger(nn.Module): | |
def __init__(self, embedding_dim, hidden_dim, vocab_size, tagset_size, n_qubits=0): | |
super(LSTMTagger, self).__init__() | |
self.hidden_dim = hidden_dim | |
self.word_embeddings = nn.Embedding(vocab_size, embedding_dim) | |
# The LSTM takes word embeddings as inputs, and outputs hidden states | |
# with dimensionality hidden_dim. | |
if n_qubits > 0: | |
print("Tagger will use Quantum LSTM") | |
self.lstm = QLSTM(embedding_dim, hidden_dim, n_qubits=n_qubits) | |
else: | |
print("Tagger will use Classical LSTM") | |
self.lstm = nn.LSTM(embedding_dim, hidden_dim) | |
# The linear layer that maps from hidden state space to tag space | |
self.hidden2tag = nn.Linear(hidden_dim, tagset_size) | |
def forward(self, sentence): | |
embeds = self.word_embeddings(sentence) | |
lstm_out, _ = self.lstm(embeds.view(len(sentence), 1, -1)) | |
tag_logits = self.hidden2tag(lstm_out.view(len(sentence), -1)) | |
tag_scores = F.log_softmax(tag_logits, dim=1) | |
return tag_scores | |
loss_function = nn.NLLLoss(). # the output is a log_softmax! | |
optimizer = optim.SGD(model.parameters(), lr=0.1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment