Created
December 20, 2017 06:08
-
-
Save reachsumit/c900594200b3d83efb7991b27f2dd5c5 to your computer and use it in GitHub Desktop.
Calculate district-wise mean centroids
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
from shapely.geometry import MultiPoint | |
# read the csv file containing borderline longitudes and latitudes for all Indian districts | |
df = pd.read_csv(r"C:\Users\sam\IndiaMap\Ind_adm2_Points.csv") | |
district = "" | |
geoList = [] | |
result_df = pd.DataFrame(data=None,columns=['State','District','Latitude','Longitude']) | |
for index, row in df.iterrows(): | |
# check if this is anew district value | |
if district and (district!=df.iloc[index]['District']): | |
# calculate centroid for previous district | |
points = MultiPoint(geoList) | |
# save the state, district, long-lat and centroid to new dataframe | |
result_df = result_df.append({'State':df['State'].iloc[index-1],'District':df['District'].iloc[index-1],'Latitude':points.centroid.x,'Longitude':points.centroid.y}, ignore_index=True) | |
# clear old geoList (APPEND NEW LONG-LAT ALSO) | |
del geoList[:] | |
# save this new district's name | |
district = df.iloc[index]['District'] | |
# add this long lat info to later calculate centroid | |
geoList.append((df.iloc[index]['Latitude'],df.iloc[index]['Longitude'])) | |
# add last district's centroid | |
if geoList: | |
points = MultiPoint(geoList) | |
result_df = result_df.append({'State':df['State'].iloc[-1],'District':df['District'].iloc[-1],'Latitude':points.centroid.x,'Longitude':points.centroid.y}, ignore_index=True) | |
del geoList[:] | |
result_df.to_csv("centroids.csv",index=False) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment