Last active
August 23, 2017 02:27
-
-
Save realfirst/1bcb68ea7ee21eea41245318a3a2e8e1 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// ch5 | |
val rawData = sc.textFile("file:///search/dje/spark-ml/train_noheader.tsv") | |
val records = rawData.map(line => line.split("\t")) | |
records.first() | |
import org.apache.spark.mllib.regression.LabeledPoint | |
import org.apache.spark.mllib.linalg.Vectors | |
val data = records.map { r => | |
val trimmed = r.map(_.replaceAll("\"","")) | |
val label = trimmed(r.size - 1).toInt | |
val features = trimmed.slice(4, r.size - 1).map(d => if (d == "?") 0.0 else d.toDouble) | |
LabeledPoint(label, Vectors.dense(features)) | |
} | |
data.cache | |
val numData = data.count | |
val nbData = records.map { r => | |
val trimmed = r.map(_.replaceAll("\"","")) | |
val label = trimmed(r.size - 1).toInt | |
val features = trimmed.slice(4, r.size - 1).map(d => if (d == "?") 0.0 else d.toDouble).map(d => if (d < 0) 0.0 else d ) | |
LabeledPoint(label, Vectors.dense(features)) | |
} | |
import org.apache.spark.mllib.classification.LogisticRegressionWithSGD | |
import org.apache.spark.mllib.classification.SVMWithSGD | |
import org.apache.spark.mllib.classification.NaiveBayes | |
import org.apache.spark.mllib.tree.DecisionTree | |
import org.apache.spark.mllib.tree.configuration.Algo | |
import org.apache.spark.mllib.tree.impurity.Entropy | |
val numIterations = 10 | |
val maxTreeDepth = 5 | |
val lrModel = LogisticRegressionWithSGD.train(data, numIterations) | |
val svmModel = SVMWithSGD.train(data, numIterations) | |
val nbMobel = NaiveBayes.train(nbdata) | |
val dtModel = DecisionTree.train(data, Algo.Classification, Entropy, maxTreeDepth) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment