Last active
February 11, 2021 18:15
-
-
Save realvictorprm/4b95abb9f83560a6713367b111c671bc to your computer and use it in GitHub Desktop.
Example implementation of the classic typeclasses Functor, Applicative & Monad for a simple newtype
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# LANGUAGE NamedFieldPuns #-} | |
{-# LANGUAGE ScopedTypeVariables #-} | |
module Main where | |
newtype Bag a = Bag {content :: a} | |
deriving (Eq, Show) | |
instance Functor Bag where | |
fmap fn Bag {content} = Bag {content = fn content} | |
bag = Bag {content = 10.0} | |
test = fmap (2.0 *) bag | |
instance Applicative Bag where | |
pure a = Bag {content = a} | |
(<*>) ff fa = do | |
let Bag {content = fn} = ff | |
Bag {content = a} = fa | |
pure $ fn a | |
double :: Double -> Bag Double | |
double a = pure (a * 2.0) | |
doublerBag :: Bag (Double -> Double) | |
doublerBag = pure (* 2.0) | |
test1 = doublerBag <*> bag | |
applicativeIdentity = (pure id <*> Bag {content = 2}) == Bag {content = 2} | |
applicativeHomomorphism = (pure id <*> pure 2 :: Bag Integer) == pure (id 2) | |
-- (u >> v) >> w = u >> (v >> w) | |
applicativeComposition = do | |
let u :: Bag (Integer -> Integer) | |
u = return (+ 1) | |
v = return (+ 2) | |
w = return 3 | |
res1 = pure (.) <*> u <*> v <*> w | |
res2 = u <*> (v <*> w) | |
res1 == res2 | |
applicativeInterchange = do | |
let u :: Bag (Integer -> Integer) | |
u = return (+ 1) | |
y = 10 | |
(u <*> pure y) == (pure ($ y) <*> u) | |
instance Monad Bag where | |
return = pure | |
(>>=) Bag {content = a} fn = fn a | |
test2 :: Bag Integer | |
test2 = do | |
res1 <- (pure 1 :: Bag Integer) | |
res2 <- (pure 2 :: Bag Integer) | |
return $ res1 + res2 | |
leftIdentityLaw2 = do | |
let x = 10 | |
let f = return | |
(return x >>= f) == (f x :: Bag Integer) | |
leftIdentityLaw = do | |
let a = 1.0 | |
(return a >>= return) == (return a :: Bag Double) | |
rightIdentityLaw2 = do | |
let m :: Bag Integer | |
m = return 10 | |
(m >>= return) == m | |
rightIdentityLaw = do | |
let fa = Bag {content = 1} | |
(fa >>= return) == fa | |
associativityLaw = do | |
let fa :: Bag Integer | |
fa = return 1 | |
((fa >>= return) >>= return) == (fa >>= (\a -> return a >>= return)) | |
main :: IO () | |
main = do | |
print bag | |
print test | |
print test1 | |
print test2 | |
let printLaw typeclass law value = print $ typeclass <> " " <> law <> " law: " <> show value | |
let printApplicativeLaw = printLaw "applicative" | |
let printMonadLaw = printLaw "monad" | |
printApplicativeLaw "identity" applicativeIdentity | |
printApplicativeLaw "composition" applicativeComposition | |
printApplicativeLaw "homomorphism" applicativeHomomorphism | |
printApplicativeLaw "interchange" applicativeInterchange | |
printMonadLaw "left identity" leftIdentityLaw | |
printMonadLaw "right identity" rightIdentityLaw | |
printMonadLaw "associativity" associativityLaw |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment