Created
August 23, 2018 21:40
-
-
Save rebeccabilbro/82cb2c03cebaad406ae3b0184e4b56bd to your computer and use it in GitHub Desktop.
Download & wrangle walking dataset
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import zipfile | |
import requests | |
import pandas as pd | |
WALKING_DATASET = ( | |
"https://archive.ics.uci.edu/ml/machine-learning-databases/00286/User%20Identification%20From%20Walking%20Activity.zip", | |
) | |
def download_data(path='data', urls=WALKING_DATASET): | |
if not os.path.exists(path): | |
os.mkdir(path) | |
for url in urls: | |
response = requests.get(url) | |
name = os.path.basename(url) | |
with open(os.path.join(path, name), 'wb') as f: | |
f.write(response.content) | |
if __name__ == "__main__": | |
download_data() | |
z = zipfile.ZipFile(os.path.join('data', 'User%20Identification%20From%20Walking%20Activity.zip')) | |
z.extractall(os.path.join('data', 'walking')) | |
# Concatenate all the separate files into a single file | |
PATH = os.path.join('data', 'walking','User Identification From Walking Activity') | |
columns = ["timestep", "x acceleration", "y acceleration", "z acceleration"] | |
allwalkers = pd.DataFrame(columns=columns) | |
for root, dirs, files in os.walk(PATH): | |
for file in files: | |
if file.endswith(".csv"): | |
walker = pd.read_csv(os.path.join(PATH, file), header=None) | |
walker.columns = columns | |
walker["walker_id"] = int(os.path.splitext(file)[0]) | |
allwalkers = pd.concat([allwalkers, walker]) | |
allwalkers.to_csv(os.path.join(PATH, "all_walkers.csv"), index=False) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment