Created
April 22, 2017 05:12
-
-
Save reddragon/3fa9c3ee4d10a7be242183d2e98cfc5d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torchvision | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision.transforms as transforms | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import torch.optim as optim | |
from torch.autograd import Variable | |
class Net(nn.Module): | |
def __init__(self): | |
super(Net, self).__init__() | |
self.conv1 = nn.Conv2d(1, 1, 5) | |
self.conv2 = nn.Conv2d(1, 1, 5) | |
self.pool = nn.MaxPool2d(2, 2) | |
self.fc1 = nn.Linear(1 * 10 * 10, 100) | |
self.fc2 = nn.Linear(100, 10) | |
def forward(self, x): | |
x = F.relu((self.conv1(x))) | |
x = F.relu(F.max_pool2d((self.conv2(x)), 2)) | |
# x = self.pool(x) | |
# x = F.relu(self.conv3(x)) | |
x = x.view(-1, 1 * 10 * 10) | |
# x = F.relu(x) | |
x = F.relu(self.fc1(x)) | |
x = F.relu(self.fc2(x)) | |
return F.log_softmax(x) | |
def unnormalize(img): | |
img = img / 2 + 0.5 | |
return img | |
def imshow(img): | |
img = img / 2 + 0.5 # unnormalize | |
npimg = img.numpy() | |
plt.imshow(np.transpose(npimg, (1, 2, 0))) | |
# Basically re-maps the [0,1] pixel to the [-1,1] range so that mean is 0. | |
transform = transforms.Compose( | |
[transforms.ToTensor(), | |
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) | |
# Getting the data | |
trainset = torchvision.datasets.MNIST(root='./data', train=True, | |
download=True, transform=transform) | |
trainloader = torch.utils.data.DataLoader(trainset, batch_size=50, | |
shuffle=True, num_workers=2) | |
testset = torchvision.datasets.MNIST(root='./data', train=False, | |
download=True, transform=transform) | |
testloader = torch.utils.data.DataLoader(testset, batch_size=50, | |
shuffle=False, num_workers=2) | |
net = Net() | |
criterion = nn.CrossEntropyLoss() | |
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.5) | |
# zero the parameter gradients | |
optimizer.zero_grad() | |
for epoch in range(20): # loop over the dataset multiple times | |
running_loss = 0.0 | |
for i, data in enumerate(trainloader, 0): | |
# get the inputs | |
inputs, labels = data | |
# print inputs.numpy().shape | |
# wrap them in Variable | |
inputs, labels = Variable(inputs), Variable(labels) | |
# zero the parameter gradients | |
optimizer.zero_grad() | |
# forward + backward + optimize | |
outputs = net(inputs) | |
loss = criterion(outputs, labels) | |
loss.backward() | |
optimizer.step() | |
# print statistics | |
running_loss += loss.data[0] | |
if i % 100 == 99: # print every 2000 mini-batches | |
print('[%d, %5d] loss: %.3f' % | |
(epoch + 1, i + 1, running_loss / 100)) | |
running_loss = 0.0 | |
print('Finished Training') | |
correct = 0 | |
total = 0 | |
for data in testloader: | |
images, labels = data | |
outputs = net(Variable(images)) | |
_, predicted = torch.max(outputs.data, 1) | |
total += labels.size(0) | |
correct += (predicted == labels).sum() | |
print('Accuracy of the network on the %d test images: %f %%' % ( | |
total, 100.0 * correct / total)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment