Skip to content

Instantly share code, notes, and snippets.

@reddragon
Created May 8, 2017 18:32
Show Gist options
  • Save reddragon/92139c3ea8aac61eff1f59d2f5db81e2 to your computer and use it in GitHub Desktop.
Save reddragon/92139c3ea8aac61eff1f59d2f5db81e2 to your computer and use it in GitHub Desktop.
Slightly tweaked PG for CartPole #dogscience
import gym
import logging
import sys
import numpy as np
from gym import wrappers
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import torch.optim as optim
import matplotlib.image as mpimg
import cPickle as pickle
import os
from math import sqrt, ceil
from torch.autograd import Variable
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(4, 100)
self.fc2 = nn.Linear(100, 10)
# self.fc3 = nn.Linear(200, 10)
self.fc4 = nn.Linear(10, 1)
def forward(self, x):
x = (self.fc1(x))
x = self.fc2(x)
# x = self.fc3(x)
x = self.fc4(x)
return F.sigmoid(x)
def get_action(net, input):
prob = net(input).data.numpy()[0][0]
x = np.random.uniform()
# print x, prob
if x > prob:
return 0, prob
return 1, prob
def save(net, optimizer, epoch):
state = {
'state_dict': net.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
}
print ("Saving checkpoint to file '{}'" . format(CHECKPOINT_FILE_PATH))
torch.save(state, CHECKPOINT_FILE_PATH)
CHECKPOINT_FILE_PATH = 'rl_ckpt'
NUM_EPISODES = 300
MIN_ITERS = 100
LEARNING_RATE = 0.002
GAMMA = 0.99
# Returns net, optimizer, epoch
def load():
net = Net()
# optimizer = optim.RMSprop(net.parameters(), lr=LEARNING_RATE, momentum=0.5)
optimizer = optim.Adam(net.parameters(), lr=LEARNING_RATE)
epoch = 0
if os.path.isfile(CHECKPOINT_FILE_PATH):
print ("Loading checkpoint from file '{}'" . format(CHECKPOINT_FILE_PATH))
checkpoint = torch.load(CHECKPOINT_FILE_PATH)
epoch = checkpoint['epoch']
net.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
return net, optimizer, epoch
# Boiler plate to get a gym object
def get_gym(record=False, outdir='rl-data'):
gym.undo_logger_setup()
logger = logging.getLogger()
formatter = logging.Formatter('[%(asctime)s] %(message)s')
handler = logging.StreamHandler(sys.stderr)
handler.setFormatter(formatter)
logger.addHandler(handler)
# You can set the level to logging.DEBUG or logging.WARN if you
# want to change the amount of output.
logger.setLevel(logging.INFO)
outdir = 'rl-data'
env = gym.make('CartPole-v0')
if record:
env = wrappers.Monitor(env, directory=outdir, force=True)
return env
def discounted_rewards(r):
r = np.array(r)
discounted_r = np.zeros_like(r)
running_add = 0
for t in reversed(xrange(0, r.size)):
running_add = running_add * GAMMA + r[t]
discounted_r[t] = running_add
return discounted_r
# return list(reversed([y*(GAMMA**idx) for idx,y in enumerate(reversed(rewards))]))
env = get_gym()
env = get_gym(record=True)
# env.seed(1234)
net, optimizer, episode = load()
# net = Net()
episode = 0
# optimizer = optim.Adam(net.parameters(), lr=0.005)
while episode < NUM_EPISODES:
obs = env.reset()
running_reward = 0
rewards = []
actions = []
obs_inps = []
outs = []
num_steps = 0
while True:
num_steps = num_steps + 1
obs_np = np.expand_dims(np.array(obs), axis=0)
input_var = Variable(torch.Tensor(obs_np))
action, prob = get_action(net, input_var)
obs_inps.append(obs)
outs.append(prob)
obs, reward, done, _ = env.step(action)
running_reward += reward
rewards.append(running_reward)
actions.append(action)
if done:
disc_rewards = np.array(discounted_rewards(rewards))
# print disc_rewards
steps = len(actions)
actions_var = Variable(torch.Tensor(actions))
rewards_var = Variable(torch.Tensor(disc_rewards))
optimizer.zero_grad()
obs_inps = np.array(obs_inps)
input_var = Variable(torch.Tensor(obs_inps))
outs_var = net(input_var)
# print 'Inps: ', obs_inps
outs = np.array(outs).reshape(-1, 1)
# print outs_var.data.numpy()
# print outs
print actions
# print outs_var.data.numpy() == outs
loss =\
-(
disc_rewards *
(
(1 - actions_var) * torch.log(1 - outs_var) +
(actions_var) * torch.log(outs_var) +
0 * (1 - actions_var) * torch.log(1-outs_var) +
0 * (actions_var) * torch.log(outs_var)
)
).sum() * 1.0 / steps
print episode, loss.data.numpy()[0], num_steps
loss.backward()
optimizer.step()
# print rewards
# print discounted_rewards(rewards)
# print outs
num_steps = 0
break
if episode % 25 == 0:
save(net, optimizer, episode)
episode = episode + 1
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment