-
-
Save redink/0367d831b769a5fd79231d11017a675f to your computer and use it in GitHub Desktop.
Find top n items in a unordered list
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-module(test). | |
-compile(export_all). | |
%% API | |
-compile({inline, [ insert/2 | |
, merge/2 | |
]}). | |
insert(E, []) -> [E]; | |
insert(E, [E2|_] = H) when E =< E2 -> [E, H]; | |
insert(E, [E2|H]) -> [E2, [E]|H]. | |
merge(H1, []) -> H1; | |
merge([E1|H1], [E2|_]=H2) when E1 =< E2 -> [E1, H2|H1]; | |
merge(H1, [E2|H2]) -> [E2, H1|H2]. | |
merge_pairs([]) -> []; | |
merge_pairs([H]) -> H; | |
merge_pairs([A, B|T]) -> merge(merge(A, B), merge_pairs(T)). | |
run_pheap(List, Num) -> | |
run_pheap(List, Num, []). | |
run_pheap(List, 0, Heap) -> | |
pheap_full(List, Heap); | |
run_pheap([], 0, Heap) -> | |
finish(Heap, []); | |
run_pheap([{Y, X, _} = H|T], N, Heap) -> | |
run_pheap(T, N-1, insert({{X, Y}, H}, Heap)). | |
pheap_full([], Heap) -> | |
finish(Heap, []); | |
pheap_full([{Y, X, _} = H|T], [{K, _}|HeapT] = Heap) -> | |
case {X, Y} of | |
N when N > K -> | |
pheap_full(T, insert({N, H}, merge_pairs(HeapT))); | |
_ -> | |
pheap_full(T, Heap) | |
end. | |
finish([], Acc) -> Acc; | |
finish([{_, H}|T], Acc) -> | |
finish(merge_pairs(T), [H|Acc]). | |
run_all_sorted_sublist(List, Num) -> | |
L = [ {{X, Y}, Z} || {Y, X, _} = Z <- List], | |
[ X || {_, X} <- lists:sublist(lists:reverse(lists:sort(L)), Num) ]. | |
run_gb_trees(List, Num) -> | |
run_gb_trees(List, Num, gb_trees:empty()). | |
run_gb_trees([], _Num, Acc) -> | |
lists:foldl(fun({Key1, Key2, Key3}, Sum) -> [{Key2, Key1, Key3}|Sum] end, [], gb_trees:keys(Acc)); | |
run_gb_trees([{Key1, Key2, Key3}|List], Num, Acc) -> | |
NewKey = {Key2, Key1, Key3}, | |
NewAcc = | |
case gb_trees:size(Acc) < Num of | |
true -> | |
gb_trees:insert(NewKey, 0, Acc); | |
false -> | |
{Smallest,_} = gb_trees:smallest(Acc), | |
case Smallest < NewKey of | |
true -> | |
Acc2 = gb_trees:delete(Smallest, Acc), | |
gb_trees:insert(NewKey, 0, Acc2); | |
false -> | |
Acc | |
end | |
end, | |
run_gb_trees(List, Num, NewAcc). | |
run_ordered_set_ets(List, Num) -> | |
run_ordered_set_ets(List, Num, | |
{0, ets:new(t, [ordered_set, public, {keypos, 2}])}). | |
run_ordered_set_ets([], _Num, {_, Table}) -> | |
R = lists:reverse(ets:tab2list(Table)), | |
ets:delete(Table), | |
R; | |
run_ordered_set_ets([{_, K, _} = H | T], Num, {I, Table}) -> | |
case I < Num of | |
true -> | |
ets:insert(Table, H); | |
false -> | |
SmallestK = ets:first(Table), | |
case K > SmallestK of | |
true -> | |
ets:delete(Table, SmallestK), | |
ets:insert(Table, H); | |
false -> | |
ok | |
end | |
end, | |
run_ordered_set_ets(T, Num, {I + 1, Table}). | |
run_small_to_big_order_list(List, Num) -> | |
run_small_to_big_order_list(List, Num, 0, []). | |
run_small_to_big_order_list([], _Num, _, Acc) -> | |
lists:foldl(fun({Key1, Key2, Key3}, Sum) -> [{Key2, Key1, Key3}|Sum] end, [], Acc); | |
run_small_to_big_order_list([{Key1, Key2, Key3}|List], Num, Len, Acc) -> | |
NewKey = {Key2, Key1, Key3}, | |
{NewLen, NewAcc} = | |
case Len < Num of | |
true -> | |
{Len + 1, lists:sort([NewKey|Acc])}; | |
false -> | |
[Smallest|Acc2] = Acc, | |
case Smallest < NewKey of | |
true -> | |
{Len, lists:sort([NewKey|Acc2])}; | |
false -> | |
{Len, Acc} | |
end | |
end, | |
run_small_to_big_order_list(List, Num, NewLen, NewAcc). | |
run_small_to_big_order_list_v2(List, Num) -> | |
run_small_to_big_order_list_v2(List, Num, fun({X2, X1, _}, {Y2, Y1, _}) | |
-> {X1, X2} =< {Y1, Y2} end, 0, []). | |
run_small_to_big_order_list_v2([], _, _, _, Acc) -> | |
lists:reverse(Acc); | |
run_small_to_big_order_list_v2([NewKey|List], Num, Fun, Len, Acc) -> | |
{NewLen, NewAcc} = | |
if Len < Num -> {Len + 1, insert(NewKey, Acc, Fun)}; | |
true -> | |
[Smallest|Acc2] = Acc, | |
case Fun(Smallest,NewKey) of | |
true -> {Len, insert(NewKey, Acc2, Fun)}; | |
false -> {Len, Acc} | |
end | |
end, | |
run_small_to_big_order_list_v2(List, Num, Fun, NewLen, NewAcc). | |
insert(K, [], _) -> [K]; | |
insert(K, [H|T], Fun) -> | |
case Fun(K, H) of | |
true -> [K, H|T]; | |
false -> [H|insert(K, T, Fun)] | |
end. | |
run_big_to_small_order_list(List, Num) -> | |
run_big_to_small_order_list(List, Num, 0, []). | |
run_big_to_small_order_list([], _Num, _, Acc) -> | |
Acc; | |
run_big_to_small_order_list([Key|List], Num, Len, Acc) -> | |
{NewLen, NewAcc} = | |
case Len < Num of | |
true -> | |
{Len + 1, lists:sort(fun({X2, X1, _}, {Y2, Y1, _}) -> {X1, X2} > {Y1, Y2} end, [Key|Acc])}; | |
false -> | |
Smallest = lists:last(Acc), | |
case Smallest < Key of | |
true -> | |
Acc2 = lists:sublist(Acc, Len - 1), | |
{Len, lists:sort(fun({X2, X1, _}, {Y2, Y1, _}) -> {X1, X2} > {Y1, Y2} end, [Key|Acc2])}; | |
false -> | |
{Len, Acc} | |
end | |
end, | |
run_big_to_small_order_list(List, Num, NewLen, NewAcc). | |
test() -> | |
[ test(TotalNum, TopNum) | |
|| TotalNum <- [5000, 10000, 15000, 20000, 25000], | |
TopNum <- [20, 30, 40, 50, 60, 70]]. | |
test_big() -> | |
[ test(TotalNum, TopNum) | |
|| TotalNum <- [25000], | |
TopNum <- [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200]]. | |
%% Test | |
test(TotalNum, TopNum) -> | |
List = prepared_random_list(TotalNum), | |
%io:format("~p~n", [List]), | |
Self = self(), | |
L = lists:keysort(2, | |
[ receive {Pid, X} -> X end | |
|| {F, Type} <- | |
[{run_all_sorted_sublist, all_sorted_sublist________}, | |
{run_gb_trees, gb_tree___________________}, | |
{run_small_to_big_order_list, small_to_big_order_list___}, | |
{run_big_to_small_order_list, big_to_small_order_list___}, | |
{run_small_to_big_order_list_v2, small_to_big_order_list_v2}, | |
{run_pheap, pheap_____________________}, | |
{run_ordered_set_ets, ordered_set_ets___________}], | |
Pid <- [spawn_link(fun() -> | |
{Time, Result} = timer:tc(?MODULE, F, [List, TopNum]), | |
Self ! {self(), {Type, Time, Result}} | |
end)] | |
]), | |
[{_, Time1, _}|_] = L, | |
[_] = lists:ukeysort(3, L), | |
{{TotalNum, TopNum}, [{Type, Time, Time/Time1*100} | |
|| {Type, Time, _} <- L]}. | |
prepared_random_list(TotalNum) -> | |
[ {X, X+1, X+2} | |
|| {_, X} <- lists:sort( | |
[ {rand:uniform(), X} | |
|| X <- lists:seq(1, TotalNum) ]) | |
]. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Suppose a scene:
TotalNum
is large andTopNum
is large too, just like functiontest_big/0
. The test result:Most of scenes we need not too large
TopNum
, just for fun. ^^