Last active
August 9, 2023 20:50
-
-
Save redknightlois/c4023d393eb8f92bb44b2ab582d7ec20 to your computer and use it in GitHub Desktop.
Ralamb optimizer (RAdam + LARS trick)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Ralamb(Optimizer): | |
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0): | |
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) | |
self.buffer = [[None, None, None] for ind in range(10)] | |
super(Ralamb, self).__init__(params, defaults) | |
def __setstate__(self, state): | |
super(Ralamb, self).__setstate__(state) | |
def step(self, closure=None): | |
loss = None | |
if closure is not None: | |
loss = closure() | |
for group in self.param_groups: | |
for p in group['params']: | |
if p.grad is None: | |
continue | |
grad = p.grad.data.float() | |
if grad.is_sparse: | |
raise RuntimeError('Ralamb does not support sparse gradients') | |
p_data_fp32 = p.data.float() | |
state = self.state[p] | |
if len(state) == 0: | |
state['step'] = 0 | |
state['exp_avg'] = torch.zeros_like(p_data_fp32) | |
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) | |
else: | |
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) | |
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32) | |
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] | |
beta1, beta2 = group['betas'] | |
# Decay the first and second moment running average coefficient | |
# m_t | |
exp_avg.mul_(beta1).add_(1 - beta1, grad) | |
# v_t | |
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) | |
state['step'] += 1 | |
buffered = self.buffer[int(state['step'] % 10)] | |
if state['step'] == buffered[0]: | |
N_sma, radam_step_size = buffered[1], buffered[2] | |
else: | |
buffered[0] = state['step'] | |
beta2_t = beta2 ** state['step'] | |
N_sma_max = 2 / (1 - beta2) - 1 | |
N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) | |
buffered[1] = N_sma | |
# more conservative since it's an approximated value | |
if N_sma >= 5: | |
radam_step_size = group['lr'] * math.sqrt((1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step']) | |
else: | |
radam_step_size = group['lr'] / (1 - beta1 ** state['step']) | |
buffered[2] = radam_step_size | |
if group['weight_decay'] != 0: | |
p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32) | |
# more conservative since it's an approximated value | |
radam_step = p_data_fp32.clone() | |
if N_sma >= 5: | |
denom = exp_avg_sq.sqrt().add_(group['eps']) | |
radam_step.addcdiv_(-radam_step_size, exp_avg, denom) | |
else: | |
radam_step.add_(-radam_step_size, exp_avg) | |
radam_norm = radam_step.pow(2).sum().sqrt() | |
weight_norm = p.data.pow(2).sum().sqrt().clamp(0, 10) | |
if weight_norm == 0 or radam_norm == 0: | |
trust_ratio = 1 | |
else: | |
trust_ratio = weight_norm / radam_norm | |
state['weight_norm'] = weight_norm | |
state['adam_norm'] = radam_norm | |
state['trust_ratio'] = trust_ratio | |
if N_sma >= 5: | |
p_data_fp32.addcdiv_(-radam_step_size * trust_ratio, exp_avg, denom) | |
else: | |
p_data_fp32.add_(-radam_step_size * trust_ratio, exp_avg) | |
p.data.copy_(p_data_fp32) | |
return loss |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
No, this was a prototype that I knocked up in a few hours time. Feel free to add those and I will update it.