Created
June 12, 2020 23:07
-
-
Save redwrasse/5bee296f751c3e2245866925cae3aa58 to your computer and use it in GitHub Desktop.
finite difference for harmonic oscillator
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
def hom1(f, x0, dx0, delta, n): | |
sol = [x0] | |
x1, dx = x0 + dx0 * delta, dx0 | |
for _ in range(n-1): | |
x0, x1, dx = x1, f(x0) * delta + x0, 1.0 * (x1 - x0) / delta | |
sol.append(x0) | |
return sol | |
def hom2(g, x0, dx0, delta, n): | |
sol = [x0] | |
x1, dx = x0 + dx0 * delta, dx0 | |
for _ in range(n-1): | |
x0, x1 = x1, g(x1, dx) * delta ** 2 + 2 * x1 - x0 | |
dx = 1.0 * (x1 - x0) / delta | |
sol.append(x0) | |
return sol | |
def harmonic_potential(x, dx): | |
omega = 2. | |
return -1. * omega ** 2 * x | |
def solve_harmonic(): | |
pi = 3.14159265 | |
period = pi | |
omega = 2 * pi / period | |
x0, dx0 = 0, omega | |
delta = 0.01 | |
tmax = 6 * pi | |
n = int(tmax / delta) | |
harmonic_sol = hom2(harmonic_potential, x0, dx0, delta, n) | |
ts = [delta * i for i in range(n)] | |
plt.plot(ts, harmonic_sol) | |
plt.show() | |
if __name__ == "__main__": | |
solve_harmonic() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment