Skip to content

Instantly share code, notes, and snippets.

@reginaldojunior
Last active June 26, 2021 15:21
Show Gist options
  • Save reginaldojunior/3c4320a5490f3b7e4364dcde2b4daf0f to your computer and use it in GitHub Desktop.
Save reginaldojunior/3c4320a5490f3b7e4364dcde2b4daf0f to your computer and use it in GitHub Desktop.
acoustic-wave.cu
%%cu
#include <stdio.h>
#include <stdlib.h>
#include <cuda_runtime.h>
#include <time.h>
#include <sys/time.h>
#include <assert.h>
#define DT 0.0070710676f // delta t
#define DX 15.0f // delta x
#define DY 15.0f // delta y
#define V 1500.0f // wave velocity v = 1500 m/s
#define HALF_LENGTH 1 // radius of the stencil
#define NUM_THREADS_BLOCK_X 32
#define NUM_THREADS_BLOCK_Y 32
#define ROWS 10000
#define COLS 10000
#define TIME 1000
__constant__ float dxSquared = DX * DX;
__constant__ float dySquared = DY * DY;
__constant__ float dtSquared = DT * DT;
inline cudaError_t checkCuda(cudaError_t result)
{
if (result != cudaSuccess) {
fprintf(stderr, "CUDA Runtime Error: %s\n", cudaGetErrorString(result));
// assert(result == cudaSuccess);
}
return result;
}
/*
* save the matrix on a file.txt
*/
void save_grid(int rows, int cols, float *matrix){
char file_name[64];
sprintf(file_name, "wavefield/wavefield.txt");
// save the result
FILE *file;
file = fopen(file_name, "w");
for(int i = 0; i < rows; i++) {
int offset = i * cols;
for(int j = 0; j < cols; j++) {
fprintf(file, "%f ", matrix[offset + j]);
}
fprintf(file, "\n");
}
fclose(file);
}
void inicializaMatriz(float *prev_base, float *next_base, float *vel_base)
{
// initialize matrix
for(int i = 0; i < ROWS; i++){
int offset = i * COLS;
for(int j = 0; j < COLS; j++){
prev_base[offset + j] = 0.0f;
next_base[offset + j] = 0.0f;
vel_base[offset + j] = V * V;
}
}
}
void inicializaFonteInicialDaOnda(float *prev_base, float *wavelet)
{
// add a source to initial wavefield as an initial condition
for(int s = 11; s >= 0; s--){
for(int i = ROWS / 2 - s; i < ROWS / 2 + s; i++){
int offset = i * COLS;
for(int j = COLS / 2 - s; j < COLS / 2 + s; j++)
prev_base[offset + j] = wavelet[s];
}
}
}
__global__ void waveGPU(float *prev_base, float *next_base, float *vel_base) {
int indexCol = blockIdx.x * blockDim.x + threadIdx.x + HALF_LENGTH;
int indexLinha = blockIdx.y * blockDim.y + threadIdx.y + HALF_LENGTH;
int current = indexLinha * COLS + indexCol;
if (indexLinha < ROWS - HALF_LENGTH && indexCol < COLS - HALF_LENGTH) {
float value = (prev_base[current + 1] - 2.0 * prev_base[current] + prev_base[current - 1]) / dxSquared;
value += (prev_base[current + COLS] - 2.0 * prev_base[current] + prev_base[current - COLS]) / dySquared;
value *= dtSquared * vel_base[current];
next_base[current] = 2.0 * prev_base[current] - next_base[current] + value;
}
}
__host__ void processamentoGPU(unsigned n) {
// calc the number of iterations (timesteps)
int iterations = (int) ( ( TIME / 1000.0 ) / DT );
int numeroBytes = n * COLS * sizeof(float);
printf("Grid Sizes: %d x %d \n", n, COLS);
printf("Iterations: %d \n", iterations);
// Aloca espaço na CPU para o resultado
float* prev_base = (float*) malloc( numeroBytes );
float* next_base = (float*) malloc( numeroBytes );
float* vel_base = (float*) malloc( numeroBytes );
float *gpu_prev_base;
float *gpu_next_base;
float *gpu_vel_base;
cudaMalloc( (void**) &gpu_prev_base, numeroBytes);
cudaMalloc( (void**) &gpu_next_base, numeroBytes);
cudaMalloc( (void**) &gpu_vel_base, numeroBytes);
// ************* BEGIN INITIALIZATION *************
printf("Initializing ... \n");
// define source wavelet
float wavelet[12] = {0.016387336, -0.041464937, -0.067372555, 0.386110067,
0.812723635, 0.416998396, 0.076488599, -0.059434419,
0.023680172, 0.005611435, 0.001823209, -0.000720549};
inicializaMatriz(prev_base, next_base, vel_base);
inicializaFonteInicialDaOnda(prev_base, wavelet);
cudaMemcpy(gpu_next_base, next_base, numeroBytes, cudaMemcpyHostToDevice);
cudaMemcpy(gpu_prev_base, prev_base, numeroBytes, cudaMemcpyHostToDevice);
cudaMemcpy(gpu_vel_base, vel_base, numeroBytes, cudaMemcpyHostToDevice);
// ************** END INITIALIZATION **************
printf("Computing wavefield ... \n");
dim3 bloco = dim3(NUM_THREADS_BLOCK_X, NUM_THREADS_BLOCK_Y);
dim3 grid = dim3(ceil ((float)ROWS * sizeof(float)/ (float) NUM_THREADS_BLOCK_X), ceil ((float)ROWS * sizeof(float)/ (float) NUM_THREADS_BLOCK_Y));
printf("Numero de Blocos: %d\n", bloco);
printf("Numero de Blocos por Grid: %d\n", grid);
// Eventos para obter o tempo de execução
cudaEvent_t start, stop;
float gpu_time = 0.0;
checkCuda( cudaEventCreate(&start) );
checkCuda( cudaEventCreate(&stop) );
checkCuda( cudaEventRecord(start, 0) );
// wavefield modeling
float *gpu_swap;
// ------------Lançamento do kernel------------
for(int k = 0; k < iterations; k++){
waveGPU<<< grid, bloco >>>(gpu_prev_base, gpu_next_base, gpu_vel_base);
cudaDeviceSynchronize();
// swap arrays for next iteration
gpu_swap = gpu_next_base;
gpu_next_base = gpu_prev_base;
gpu_prev_base = gpu_swap;
}
// Obtém o erro de lançamento de kernel
cudaError_t error = cudaGetLastError();
checkCuda( error );
// Eventos que marcam o tempo de final de execução do kernel
checkCuda( cudaEventRecord(stop, 0) );
checkCuda( cudaEventSynchronize(stop) );
checkCuda( cudaEventElapsedTime(&gpu_time, start, stop) );
// ------------Transferir o resultado para a CPU------------
cudaMemcpy(next_base, gpu_next_base, numeroBytes, cudaMemcpyDeviceToHost);
cudaMemcpy(prev_base, gpu_prev_base, numeroBytes, cudaMemcpyDeviceToHost);
cudaMemcpy(vel_base, gpu_vel_base, numeroBytes, cudaMemcpyDeviceToHost);
save_grid(ROWS, COLS, next_base);
cudaFree(gpu_next_base);
cudaFree(gpu_prev_base);
cudaFree(gpu_vel_base);
printf("Tempo de Execução na GPU: %.4f s ", gpu_time / 1000);
}
int main(void) {
cudaSetDevice(0);
cudaDeviceProp prop;
cudaGetDeviceProperties(&prop,0);
int n = ROWS;
processamentoGPU(n);
return 0;
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment