Created
June 25, 2021 04:45
-
-
Save reginaldojunior/57bf9edf9bf104d88e64e7af210d81b3 to your computer and use it in GitHub Desktop.
feedforward.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from matrix import Matrix | |
import math | |
class RedeNeural(): | |
nodes_input = [] | |
nodes_hidden = [] | |
nodes_output = [] | |
bias_in_to_hidden = [] | |
bias_hidden_to_output = [] | |
weight_in_to_hidden = [] | |
weight_in_to_output = [] | |
learn_rate = 0.5 | |
def __init__(self, nodes_input, nodes_hidden, nodes_output): | |
self.nodes_input = Matrixx().create_matrix(nodes_input, nodes_hidden) | |
self.nodes_hidden = Matrixx().create_matrix(nodes_hidden, nodes_output) | |
self.nodes_output = Matrixx().create_matrix(nodes_output, 1) | |
self.bias_in_to_hidden = Matrixx().create_matrix(nodes_input, nodes_hidden) | |
self.bias_hidden_to_output = Matrixx().create_matrix(nodes_hidden, nodes_output) | |
def sigmoid(self, x): | |
return 1 / (1 + math.exp(-x)) | |
def feedforward(self, input): | |
input = Matrixx().array_to_matrix(input) | |
hidden = input.multiply(self.nodes_hidden, input) | |
hidden = input.add(hidden, self.bias_in_to_hidden, True) | |
hidden = list(map(lambda i: list(map(lambda j: self.sigmoid(j), i)), hidden)) | |
hidden = Matrixx().array_to_matrix(hidden) | |
output = input.multiply(self.nodes_output, hidden) | |
output.data = list(output.data)[0] | |
output = input.add_output(output, self.bias_hidden_to_output, True) | |
output = list(output[0][0]) | |
output = map(lambda i: self.sigmoid(i), output) | |
print(output) | |
r = RedeNeural(1, 2, 1) | |
r.feedforward([1, 2]) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment