Last active
April 21, 2020 12:01
-
-
Save regivm/b6f9ded5929af9d8490b2506744716df to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
from sklearn import datasets | |
from sklearn.linear_model import LinearRegression | |
from sklearn.preprocessing import StandardScaler | |
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score | |
from scipy.optimize import minimize | |
boston = datasets.load_boston() | |
y = boston.target | |
X = pd.DataFrame(boston.data, columns = boston.feature_names) | |
ss = StandardScaler() | |
Xs = ss.fit_transform(X) | |
Xs = pd.DataFrame(Xs, columns=boston.feature_names) | |
Xs['const'] = 1 | |
Xss = Xs.copy() | |
lr = LinearRegression(fit_intercept=False) | |
lr.fit(Xss, y) | |
pd.DataFrame(list(lr.coef_), index=Xs.columns, columns=['coefs']) | |
y_pred = lr.predict(Xss) | |
print('Means Squared Error: ', mean_squared_error(y, y_pred)) | |
print('R-Square: ', r2_score(y, y_pred)) | |
plt.scatter(lr.predict(Xss), y, color = "red") | |
plt.scatter(lr.predict(Xss), lr.predict(Xss), color = "green") | |
plt.title("Predicted vs Actual Price") | |
plt.xlabel("Boston House Price(Predicted)") | |
plt.ylabel("House Price") | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment