Last active
June 10, 2022 19:25
-
-
Save remi-or/8b2a6ef3bc59821305498ad627e16502 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def aug_test(self, | |
imgs: List[Tensor], | |
img_metas: List[dict], | |
rescale: bool = False) -> Tensor: | |
acc_boxes = np.zeros((0, 5)) | |
acc_score = np.zeros((0, self.roi_head.bbox_head.num_classes)) | |
for img, img_meta in zip(imgs, img_metas): | |
for label, dets in enumerate(self.simple_test(img, img_meta, None, rescale)[0]): | |
boxes, scores = dets[:, :-1], dets[:, -1] | |
acc_boxes = np.vstack((acc_boxes, boxes)) | |
full_scores = np.zeros((scores.shape[0], acc_score.shape[1])) | |
full_scores[:, label] = scores | |
acc_score = np.vstack((acc_score, full_scores)) | |
bboxes, labels = multiclass_nms_rotated(multi_bboxes=torch.tensor(acc_boxes), | |
multi_scores=torch.tensor(acc_score), | |
score_thr=0.5, | |
nms=Namespace(iou_thr=0.7)) | |
merged_dets = [[] for _ in range(self.roi_head.bbox_head.num_classes)] | |
for box, label in zip(bboxes, labels): | |
merged_dets[int(label)].append(box) | |
for label, bboxes in enumerate(merged_dets): | |
merged_dets[label] = torch.vstack(bboxes).numpy() if bboxes else np.zeros((0, 6)) | |
return [merged_dets] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment