Created
March 28, 2013 04:20
-
-
Save remram44/5260578 to your computer and use it in GitHub Desktop.
matrix to quaternion
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* quaternion from matrix */ | |
/* from Id Software, From Quaternion to Matrix and Back, 2005 */ | |
float ReciprocalSqrt(float x) | |
{ | |
long i; | |
float y, r; | |
y = x * 0.5f; | |
i = *(long*)&x; | |
i = 0x5f3759df - (i >> 1); | |
r = *(float*)&i; | |
r = r * (1.5f - r * r * y); | |
return r; | |
} | |
void ConvertJointMatsToJointQuats(JointQuat *jointQuats, const JointMat *jointMats, const int numJoints) | |
{ | |
for(int i = 0; i < numJoints; i++) | |
{ | |
float *q = &jointQuats[i].q; | |
const float *m = jointMats[i].mat; | |
if(m[0 * 4 + 0] + m[1 * 4 + 1] + m[2 * 4 + 2] > 0.0f) | |
{ | |
float t = + m[0 * 4 + 0] + m[1 * 4 + 1] + m[2 * 4 + 2] + 1.0f; | |
float s = ReciprocalSqrt(t) * 0.5f; | |
q[3] = s * t; | |
q[2] = (m[0 * 4 + 1] - m[1 * 4 + 0]) * s; | |
q[1] = (m[2 * 4 + 0] - m[0 * 4 + 2]) * s; | |
q[0] = (m[1 * 4 + 2] - m[2 * 4 + 1]) * s; | |
} | |
else if(m[0 * 4 + 0] > m[1 * 4 + 1] && m[0 * 4 + 0] > m[2 * 4 + 2]) | |
{ | |
float t = + m[0 * 4 + 0] - m[1 * 4 + 1] - m[2 * 4 + 2] + 1.0f; | |
float s = ReciprocalSqrt(t) * 0.5f; | |
q[0] = s * t; | |
q[1] = (m[0 * 4 + 1] + m[1 * 4 + 0] ) * s; | |
q[2] = (m[2 * 4 + 0] + m[0 * 4 + 2] ) * s; | |
q[3] = (m[1 * 4 + 2] - m[2 * 4 + 1] ) * s; | |
} | |
else if(m[1 * 4 + 1] > m[2 * 4 + 2]) | |
{ | |
float t = - m[0 * 4 + 0] + m[1 * 4 + 1] - m[2 * 4 + 2] + 1.0f; | |
float s = ReciprocalSqrt(t) * 0.5f; | |
q[1] = s * t; | |
q[0] = (m[0 * 4 + 1] + m[1 * 4 + 0]) * s; | |
q[3] = (m[2 * 4 + 0] - m[0 * 4 + 2]) * s; | |
q[2] = (m[1 * 4 + 2] + m[2 * 4 + 1]) * s; | |
} | |
else | |
{ | |
float t = - m[0 * 4 + 0] - m[1 * 4 + 1] + m[2 * 4 + 2] + 1.0f; | |
float s = ReciprocalSqrt(t) * 0.5f; | |
q[2] = s * t; | |
q[3] = (m[0 * 4 + 1] - m[1 * 4 + 0]) * s; | |
q[0] = (m[2 * 4 + 0] + m[0 * 4 + 2]) * s; | |
q[1] = (m[1 * 4 + 2] + m[2 * 4 + 1]) * s; | |
} | |
q[4] = m[0 * 4 + 3]; | |
q[5] = m[1 * 4 + 3]; | |
q[6] = m[2 * 4 + 3]; | |
q[7] = 0.0f; | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment