Created
July 13, 2017 18:58
-
-
Save renato2099/07a693a719098fb82f4bb5da795a7fc4 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Distributed MNIST training and validation, with model replicas. | |
A simple softmax model with one hidden layer is defined. The parameters | |
(weights and biases) are located on one parameter server (ps), while the ops | |
are executed on two worker nodes by default. The TF sessions also run on the | |
worker node. | |
Multiple invocations of this script can be done in parallel, with different | |
values for --task_index. There should be exactly one invocation with | |
--task_index, which will create a master session that carries out variable | |
initialization. The other, non-master, sessions will wait for the master | |
session to finish the initialization before proceeding to the training stage. | |
The coordination between the multiple worker invocations occurs due to | |
the definition of the parameters on the same ps devices. The parameter updates | |
from one worker is visible to all other workers. As such, the workers can | |
perform forward computation and gradient calculation in parallel, which | |
should lead to increased training speed for the simple model. | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import math | |
import sys | |
import tempfile | |
import time | |
import tensorflow as tf | |
import numpy as np | |
from tensorflow.examples.tutorials.mnist import input_data | |
flags = tf.app.flags | |
flags.DEFINE_string("data_dir", "/tmp/mnist-data", | |
"Directory for storing mnist data") | |
flags.DEFINE_boolean("download_only", False, | |
"Only perform downloading of data; Do not proceed to " | |
"session preparation, model definition or training") | |
flags.DEFINE_integer("task_index", None, | |
"Worker task index, should be >= 0. task_index=0 is " | |
"the master worker task the performs the variable " | |
"initialization ") | |
flags.DEFINE_integer("replicas_to_aggregate", None, | |
"Number of replicas to aggregate before parameter update" | |
"is applied (For sync_replicas mode only; default: " | |
"num_workers)") | |
flags.DEFINE_integer("hidden_units", 100, | |
"Number of units in the hidden layer of the NN") | |
flags.DEFINE_integer("train_steps", 2000, | |
"Number of (global) training steps to perform") | |
flags.DEFINE_integer("batch_size", 100, "Training batch size") | |
flags.DEFINE_float("learning_rate", 0.01, "Learning rate") | |
flags.DEFINE_boolean("sync_replicas", False, | |
"Use the sync_replicas (synchronized replicas) mode, " | |
"wherein the parameter updates from workers are aggregated " | |
"before applied to avoid stale gradients") | |
flags.DEFINE_boolean( | |
"existing_servers", False, "Whether servers already exists. If True, " | |
"will use the worker hosts via their GRPC URLs (one client process " | |
"per worker host). Otherwise, will create an in-process TensorFlow " | |
"server.") | |
flags.DEFINE_string("ps_hosts","localhost:2222", | |
"Comma-separated list of hostname:port pairs") | |
flags.DEFINE_string("worker_hosts", "localhost:2223,localhost:2224", | |
"Comma-separated list of hostname:port pairs") | |
flags.DEFINE_string("job_name", None,"job name: worker or ps") | |
FLAGS = flags.FLAGS | |
IMAGE_PIXELS = 28 | |
SEED = 66478 | |
def main(unused_argv): | |
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True, seed=SEED) | |
if FLAGS.download_only: | |
sys.exit(0) | |
if FLAGS.job_name is None or FLAGS.job_name == "": | |
raise ValueError("Must specify an explicit `job_name`") | |
if FLAGS.task_index is None or FLAGS.task_index =="": | |
raise ValueError("Must specify an explicit `task_index`") | |
print("job name = %s" % FLAGS.job_name) | |
print("task index = %d" % FLAGS.task_index) | |
#Construct the cluster and start the server | |
ps_spec = FLAGS.ps_hosts.split(",") | |
worker_spec = FLAGS.worker_hosts.split(",") | |
# Get the number of workers. | |
num_workers = len(worker_spec) | |
cluster = tf.train.ClusterSpec({ | |
"ps": ps_spec, | |
"worker": worker_spec}) | |
if not FLAGS.existing_servers: | |
# Not using existing servers. Create an in-process server. | |
server = tf.train.Server( | |
cluster, job_name=FLAGS.job_name, task_index=FLAGS.task_index) | |
if FLAGS.job_name == "ps": | |
server.join() | |
is_chief = (FLAGS.task_index == 0) | |
# allocate the CPU to worker server | |
cpu = 0 | |
worker_device = "/job:worker/task:%d/cpu:%d" % (FLAGS.task_index, cpu) | |
# The device setter will automatically place Variables ops on separate | |
# parameter servers (ps). The non-Variable ops will be placed on the workers. | |
# The ps use CPU and workers use corresponding GPU | |
tf.set_random_seed(SEED) | |
with tf.device( | |
tf.train.replica_device_setter( | |
worker_device=worker_device, | |
ps_device="/job:ps/cpu:0", | |
cluster=cluster)): | |
tf.set_random_seed(SEED) | |
global_step = tf.Variable(0, name="global_step", trainable=False) | |
# Variables of the hidden layer | |
hid_w = tf.Variable( | |
tf.truncated_normal( | |
[IMAGE_PIXELS * IMAGE_PIXELS, FLAGS.hidden_units], | |
stddev=1.0 / IMAGE_PIXELS), | |
name="hid_w") | |
hid_b = tf.Variable(tf.zeros([FLAGS.hidden_units]), name="hid_b") | |
# Variables of the softmax layer | |
sm_w = tf.Variable( | |
tf.truncated_normal( | |
[FLAGS.hidden_units, 10], | |
stddev=1.0 / math.sqrt(FLAGS.hidden_units)), | |
name="sm_w") | |
sm_b = tf.Variable(tf.zeros([10]), name="sm_b") | |
# Ops: located on the worker specified with FLAGS.task_index | |
x = tf.placeholder(tf.float32, [None, IMAGE_PIXELS * IMAGE_PIXELS]) | |
y_ = tf.placeholder(tf.float32, [None, 10]) | |
hid_lin = tf.nn.xw_plus_b(x, hid_w, hid_b) | |
hid = tf.nn.relu(hid_lin) | |
y = tf.nn.softmax(tf.nn.xw_plus_b(hid, sm_w, sm_b)) | |
with tf.name_scope('accuracy'): | |
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) | |
correct_prediction = tf.cast(correct_prediction, tf.float32) | |
accuracy = tf.reduce_mean(correct_prediction) | |
cross_entropy = -tf.reduce_sum(y_ * tf.log(tf.clip_by_value(y, 1e-10, 1.0))) | |
opt = tf.train.AdamOptimizer(FLAGS.learning_rate) | |
if FLAGS.sync_replicas: | |
if FLAGS.replicas_to_aggregate is None: | |
replicas_to_aggregate = num_workers | |
else: | |
replicas_to_aggregate = FLAGS.replicas_to_aggregate | |
opt = tf.train.SyncReplicasOptimizer( | |
opt, | |
replicas_to_aggregate=replicas_to_aggregate, | |
total_num_replicas=num_workers, | |
name="mnist_sync_replicas") | |
train_step = opt.minimize(cross_entropy, global_step=global_step) | |
if FLAGS.sync_replicas: | |
local_init_op = opt.local_step_init_op | |
if is_chief: | |
local_init_op = opt.chief_init_op | |
ready_for_local_init_op = opt.ready_for_local_init_op | |
# Initial token and chief queue runners required by the sync_replicas mode | |
chief_queue_runner = opt.get_chief_queue_runner() | |
sync_init_op = opt.get_init_tokens_op() | |
init_op = tf.global_variables_initializer() | |
train_dir = tempfile.mkdtemp() | |
if FLAGS.sync_replicas: | |
sv = tf.train.Supervisor( | |
is_chief=is_chief, | |
logdir=train_dir, | |
init_op=init_op, | |
local_init_op=local_init_op, | |
ready_for_local_init_op=ready_for_local_init_op, | |
recovery_wait_secs=1, | |
global_step=global_step) | |
else: | |
sv = tf.train.Supervisor( | |
is_chief=is_chief, | |
logdir=train_dir, | |
init_op=init_op, | |
recovery_wait_secs=1, | |
global_step=global_step) | |
sess_config = tf.ConfigProto( | |
allow_soft_placement=True, | |
log_device_placement=False, | |
device_filters=["/job:ps", "/job:worker/task:%d" % FLAGS.task_index]) | |
print(sess_config) | |
# The chief worker (task_index==0) session will prepare the session, | |
# while the remaining workers will wait for the preparation to complete. | |
if is_chief: | |
print("Worker %d: Initializing session..." % FLAGS.task_index) | |
else: | |
print("Worker %d: Waiting for session to be initialized..." % | |
FLAGS.task_index) | |
if FLAGS.existing_servers: | |
server_grpc_url = "grpc://" + worker_spec[FLAGS.task_index] | |
print("Using existing server at: %s" % server_grpc_url) | |
sess = sv.prepare_or_wait_for_session(server_grpc_url, | |
config=sess_config) | |
else: | |
sess = sv.prepare_or_wait_for_session(server.target, config=sess_config) | |
print("Worker %d: Session initialization complete." % FLAGS.task_index) | |
if FLAGS.sync_replicas and is_chief: | |
# Chief worker will start the chief queue runner and call the init op. | |
sess.run(sync_init_op) | |
sv.start_queue_runners(sess, [chief_queue_runner]) | |
# Perform training | |
time_begin = time.time() | |
print("Training begins @ %f" % time_begin) | |
local_step = 0 | |
losses = [] | |
avg_loss_sz = 1000 | |
loss_th = 0.3 | |
while True: | |
# Training feed | |
batch_xs, batch_ys = mnist.train.next_batch(FLAGS.batch_size) | |
train_feed = {x: batch_xs, y_: batch_ys} | |
_, step, loss_val = sess.run([train_step, global_step, cross_entropy], feed_dict=train_feed) | |
local_step += 1 | |
now = time.time() | |
if len(losses) == avg_loss_sz: | |
losses.pop(0) | |
losses.append(loss_val) | |
if local_step % 1000 == 0: | |
print("%f: Worker %d: training step %d done - loss %f (global step: %d) " % | |
(now, FLAGS.task_index, local_step, np.mean(losses), step)) | |
if ( np.mean(losses) < loss_th ): | |
break | |
time_end = time.time() | |
print("Training ends @ %f" % time_end) | |
training_time = time_end - time_begin | |
print("[TRAINING] elapsed time: %f secs - task_id %d" % (training_time, FLAGS.task_index)) | |
# Validation feed | |
val_feed = {x: mnist.validation.images, y_: mnist.validation.labels} | |
val_xent = sess.run(cross_entropy, feed_dict=val_feed) | |
print("After %d training step(s), validation cross entropy = %g, loss_val = %f" % | |
(FLAGS.train_steps, val_xent, np.mean(losses))) | |
print('test accuracy %g' % sess.run(accuracy, feed_dict={ | |
x: mnist.validation.images, y_: mnist.validation.labels})) | |
if __name__ == "__main__": | |
tf.app.run() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment