Created
May 21, 2014 21:29
-
-
Save renaud/98ee62bb9748904a3432 to your computer and use it in GitHub Desktop.
Digamma (psi) function, since Octave does not implement it yet
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function y = psi(x) | |
%DIGAMMA Digamma function. | |
% DIGAMMA(X) returns digamma(x) = d log(gamma(x)) / dx | |
% If X is a matrix, returns the digamma function evaluated at each element. | |
% Reference: | |
% | |
% J Bernardo, | |
% Psi ( Digamma ) Function, | |
% Algorithm AS 103, | |
% Applied Statistics, | |
% Volume 25, Number 3, pages 315-317, 1976. | |
% | |
% From http://www.psc.edu/~burkardt/src/dirichlet/dirichlet.f | |
large = 9.5; | |
d1 = -0.5772156649015328606065121; % digamma(1) | |
d2 = pi^2/6; | |
small = 1e-6; | |
s3 = 1/12; | |
s4 = 1/120; | |
s5 = 1/252; | |
s6 = 1/240; | |
s7 = 1/132; | |
s8 = 691/32760; | |
s9 = 1/12; | |
s10 = 3617/8160; | |
% Initialize | |
y = zeros(size(x)); | |
% illegal arguments | |
i = find(x == -Inf | isnan(x)); | |
if ~isempty(i) | |
x(i) = NaN; | |
y(i) = NaN; | |
end | |
% Negative values | |
i = find(x < 0); | |
if ~isempty(i) | |
% Use the reflection formula (Jeffrey 11.1.6): | |
% digamma(-x) = digamma(x+1) + pi*cot(pi*x) | |
y(i) = digamma(-x(i)+1) + pi*cot(-pi*x(i)); | |
% This is related to the identity | |
% digamma(-x) = digamma(x+1) - digamma(z) + digamma(1-z) | |
% where z is the fractional part of x | |
% For example: | |
% digamma(-3.1) = 1/3.1 + 1/2.1 + 1/1.1 + 1/0.1 + digamma(1-0.1) | |
% = digamma(4.1) - digamma(0.1) + digamma(1-0.1) | |
% Then we use | |
% digamma(1-z) - digamma(z) = pi*cot(pi*z) | |
end | |
i = find(x == 0); | |
if ~isempty(i) | |
y(i) = -Inf; | |
end | |
% Use approximation if argument <= small. | |
i = find(x > 0 & x <= small); | |
if ~isempty(i) | |
y(i) = y(i) + d1 - 1 ./ x(i) + d2*x(i); | |
end | |
% Reduce to digamma(X + N) where (X + N) >= large. | |
while(1) | |
i = find(x > small & x < large); | |
if isempty(i) | |
break | |
end | |
y(i) = y(i) - 1 ./ x(i); | |
x(i) = x(i) + 1; | |
end | |
% Use de Moivre's expansion if argument >= large. | |
% In maple: asympt(Psi(x), x); | |
i = find(x >= large); | |
if ~isempty(i) | |
r = 1 ./ x(i); | |
y(i) = y(i) + log(x(i)) - 0.5 * r; | |
r = r .* r; | |
y(i) = y(i) - r .* ( s3 - r .* ( s4 - r .* (s5 - r .* (s6 - r .* s7)))); | |
end |
It is already in specfun package, however it didn't updated since 2011.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Thanks! I think octave-forge implements it through gsl.