Created
June 8, 2023 20:59
-
-
Save renet123/cd9ffa0838cb2191e6ef272cd7aeed24 to your computer and use it in GitHub Desktop.
Python script for automated reporting using AI
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import numpy as np | |
from sklearn.preprocessing import StandardScaler | |
from sklearn.linear_model import LinearRegression | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
# Load data | |
# Replace 'your_data.csv' with your actual data file | |
# Make sure the CSV file is in the same directory as this script | |
# Or provide the full path to the file | |
# data = pd.read_csv('your_data.csv') | |
# Clean and preprocess data | |
# This is a placeholder. Replace with your actual data cleaning/preprocessing steps | |
# data = data.dropna() | |
# data = data.drop(['unnecessary_column'], axis=1) | |
# Scale data | |
# scaler = StandardScaler() | |
# data_scaled = scaler.fit_transform(data) | |
# Train model | |
# model = LinearRegression() | |
# model.fit(data_scaled[:, :-1], data_scaled[:, -1]) | |
# Make predictions | |
# predictions = model.predict(data_scaled[:, :-1]) | |
# Plot results | |
# plt.figure(figsize=(10, 6)) | |
# sns.lineplot(data=data_scaled[:, -1], label='Actual') | |
# sns.lineplot(data=predictions, label='Predicted') | |
# plt.title('Actual vs Predicted') | |
# plt.show() | |
# Save results to CSV | |
# results = pd.DataFrame({'Actual': data_scaled[:, -1], 'Predicted': predictions}) | |
# results.to_csv('results.csv', index=False) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment