Skip to content

Instantly share code, notes, and snippets.

@renet123
Created June 8, 2023 20:59
Show Gist options
  • Save renet123/cd9ffa0838cb2191e6ef272cd7aeed24 to your computer and use it in GitHub Desktop.
Save renet123/cd9ffa0838cb2191e6ef272cd7aeed24 to your computer and use it in GitHub Desktop.
Python script for automated reporting using AI
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
import seaborn as sns
# Load data
# Replace 'your_data.csv' with your actual data file
# Make sure the CSV file is in the same directory as this script
# Or provide the full path to the file
# data = pd.read_csv('your_data.csv')
# Clean and preprocess data
# This is a placeholder. Replace with your actual data cleaning/preprocessing steps
# data = data.dropna()
# data = data.drop(['unnecessary_column'], axis=1)
# Scale data
# scaler = StandardScaler()
# data_scaled = scaler.fit_transform(data)
# Train model
# model = LinearRegression()
# model.fit(data_scaled[:, :-1], data_scaled[:, -1])
# Make predictions
# predictions = model.predict(data_scaled[:, :-1])
# Plot results
# plt.figure(figsize=(10, 6))
# sns.lineplot(data=data_scaled[:, -1], label='Actual')
# sns.lineplot(data=predictions, label='Predicted')
# plt.title('Actual vs Predicted')
# plt.show()
# Save results to CSV
# results = pd.DataFrame({'Actual': data_scaled[:, -1], 'Predicted': predictions})
# results.to_csv('results.csv', index=False)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment