Created
September 30, 2016 20:09
-
-
Save renexdev/e04e31dad78b97337e93100472c7be76 to your computer and use it in GitHub Desktop.
Calibration curve fitting and interpolating magnetization values
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
from scipy import interpolate | |
import sys | |
sys.path.append("./modules/") | |
#################################################################################################################################### | |
filename = '08.0K_20x_01_d1_intensity_v_01' | |
#08.0K_20x_01_d1_intensity_h_02 | |
#08.0K_20x_01_d1_intensity_v_01 | |
#08.0K_20x_01_d1_intensity_v_02 | |
filenameOut = '08.0K_20x_01_d1_gauss_v_01' | |
dataIn = np.loadtxt(filename+".dat") | |
#################################################################################################################################### | |
writeIt = open(filenameOut+".dat", "w") | |
relPath = "./" | |
filename = 'd01_Hyst_08.0K_20x_01_IvsH_bkgId_2_01' | |
#filename = 'd01_Hyst_08.0K_20x_01_IvsH_bkgId_2_02' | |
calCurve = np.loadtxt(relPath+filename+".dat") | |
Int = np.array([calCurve[i,0] for i in range(len(calCurve[:,0]))]) | |
Ha = np.array([calCurve[i,1] for i in range(len(calCurve[:,0]))]) | |
correction = min(Int)-34520.0 | |
Int=Int-correction | |
#34520.0 | |
tck = interpolate.splrep(Int, Ha, s=0) | |
yPy = interpolate.splev(Int, tck, der=0) | |
lenRow = dataIn.shape[0] | |
lenCol = dataIn.shape[1] | |
minVals = [] | |
spline3MinVals = [] | |
maxVals = [] | |
spline3MaxVals = [] | |
print Int[1]-Int[0] | |
for j in range(lenCol): | |
writeIt.write("%.2f\t" % (dataIn[0,j])) #800 | |
writeIt.write("\n") | |
for i in range(1,lenRow): | |
writeIt.write("%.2f\t" % (dataIn[i,0])) #800 | |
for j in range(1,lenCol): | |
if(dataIn[i,j]<min(Int)): | |
minVals.append(dataIn[i,j]) | |
spline3MinVals.append(interpolate.splev(dataIn[i,j], tck, der=0)) | |
print "MIN %d %d (%.2f G) - value %d- min %d - dif %d"%(i,j,dataIn[0,j],dataIn[i,j],min(Int),dataIn[i,j]-min(Int)) | |
if(dataIn[i,j]>max(Int)): | |
maxVals.append(dataIn[i,j]) | |
spline3MaxVals.append(interpolate.splev(dataIn[i,j], tck, der=0)) | |
print "MAX %d %d (%.2f G) - value %d- max %d - dif %d"%(i,j,dataIn[0,j],dataIn[i,j],max(Int),dataIn[i,j]-max(Int)) | |
writeIt.write("%.4f\t" % (interpolate.splev(dataIn[i,j], tck, der=0))) #800 | |
#writeIt.write("%.4f\t" % (interpolate.splev(dataIn[i,j], tck, der=0))) #800 | |
writeIt.write("\n") | |
writeIt.close() | |
if(len(minVals)!=0): print min(minVals) | |
plt.plot(Int, Ha, 'o',Int, yPy , 'b',minVals,spline3MinVals ,'ko' ,maxVals,spline3MaxVals ,'go') | |
plt.legend(['data', 'cubic spline python'], loc='best') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment