Last active
March 22, 2022 13:50
-
-
Save reox/da110ea2bbb7a4779820a6239a79a504 to your computer and use it in GitHub Desktop.
Fun with stiffness matrices: Voigt-Reuss-Hill averages and plotting Young's modulus
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Fun with stiffness matrices! | |
The plotting routine is inspired by https://github.com/coudertlab/elate | |
The Voigt-Reuss-Hill Averaging was directly copied from there. | |
Note the following relationships of stresses and strains: | |
sigma_ij ... stress tensor | |
epsilon_ij ... strain tensor | |
1) C ... stiffness tensor | |
sigma_ij = C_ijkl epsilon_kl | |
2) K / S / C^-1 ... compliance tensor | |
epsilon_ij = K_ijkl sigma_kl | |
Copyright (c) 2022 S. Bachmann | |
Permission is hereby granted, free of charge, to any person obtaining a copy | |
of this software and associated documentation files (the "Software"), to deal | |
in the Software without restriction, including without limitation the rights | |
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
copies of the Software, and to permit persons to whom the Software is | |
furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in all | |
copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
SOFTWARE. | |
""" | |
from collections import namedtuple | |
import matplotlib.pyplot as plt | |
import numpy as np | |
def ortho_stiffness(E_1, E_2, E_3, G_23, G_31, G_12, nu_12, nu_13, nu_23): | |
""" | |
Returns an orthotropic stiffness matrix from 9 material constants | |
Note that G_ij = G_ji but nu_ij != nu_ji""" | |
S = np.zeros((6, 6)) | |
nu_21 = (nu_12 / E_1) * E_2 | |
nu_31 = (nu_13 / E_1) * E_3 | |
nu_32 = (nu_23 / E_2) * E_3 | |
S[0,0] = 1 / E_1 | |
S[1,1] = 1 / E_2 | |
S[2,2] = 1 / E_3 | |
S[3,3] = 1 / G_23 | |
S[4,4] = 1 / G_31 | |
S[5,5] = 1 / G_12 | |
S[0,1] = -nu_21 / E_2 | |
S[0,2] = -nu_31 / E_3 | |
S[1,0] = -nu_12 / E_1 | |
S[1,2] = -nu_32 / E_3 | |
S[2,0] = -nu_13 / E_1 | |
S[2,1] = -nu_23 / E_2 | |
return np.linalg.inv(S) | |
def iso_stiffness(E, nu): | |
"""Isotropic stiffness, defined by 2 material constants""" | |
G = E / (2*(1+nu)) | |
return ortho_stiffness(E, E, E, G, G, G, nu, nu, nu) | |
def cubicansio_stiffness(E, G, nu): | |
"""Cubic Anisotropic Material""" | |
# From: https://de.wikipedia.org/wiki/Orthotropie#Spezialf%C3%A4lle_der_Orthotropie | |
return ortho_stiffness(E, E, E, G, G, G, nu, nu, nu) | |
def transiso_stiffness(E_1, E_3, nu_12, nu_31, G_23): | |
""" | |
Transversal isotropic material, defined by 5 constants | |
* E1 = E2 ... minor direction | |
* E3 ... major direction | |
* nu_12 = nu_21 | |
* nu_31 = nu_32 | |
* G_23 = G_31 | |
* G_12 = E_1 / (2*(1-nu_12) | |
""" | |
# symmetries above orthotropic: | |
E_2 = E_1 | |
nu_32 = nu_31 | |
G_31 = G_23 | |
G_12 = E_1 / (2*(1-nu_12)) | |
nu_23 = (nu_32 / E_3) * E_2 | |
nu_13 = (nu_31 / E_3) * E_1 | |
return ortho_stiffness(E_1, E_2, E_3, G_23, G_31, G_12, nu_12, nu_13, nu_23) | |
avg_res = namedtuple("Averages", ['Voigt', 'Reuss', 'Hill']) | |
consts = namedtuple('ElasticConstants', ['BulkModulus', 'YoungsModulus', 'ShearModulus', 'PoissonRatio']) | |
def _avg(M): | |
return (M[0][0] + M[1][1] + M[2][2]) / 3, (M[1][2] + M[0][2] + M[0][1]) / 3, (M[3][3] + M[4][4] + M[5][5]) / 3 | |
def averages(C: np.array): | |
""" | |
Returns the Voigt, Reuss and Hill averages for a given stiffness matrix | |
Voigt: Takes averages only from the stiffness matrix | |
Reuss: Takes averages only from the compliance matrix | |
Hill: Takes averages of Voigt and Reuss | |
From: https://github.com/coudertlab/elate/blob/8c789b7f249d41219a8dbe12974820387b6d5c55/elastic.py#L689 | |
""" | |
S = np.linalg.inv(C) | |
A, B, C = _avg(C) | |
a, b, c = _avg(S) | |
KV = (A + 2 * B) / 3 | |
GV = (A - B + 3 * C) / 5 | |
KR = 1 / (3 * a + 6 * b) | |
GR = 5 / (4 * a - 4 * b + 3 * c) | |
KH = (KV + KR) / 2 | |
GH = (GV + GR) / 2 | |
return avg_res( | |
consts(KV, 1 / (1 / (3 * GV) + 1 / (9 * KV)), GV, (1 - 3 * GV / (3 * KV + GV)) / 2), | |
consts(KR, 1 / (1 / (3 * GR) + 1 / (9 * KR)), GR, (1 - 3 * GR / (3 * KR + GR)) / 2), | |
consts(KH, 1 / (1 / (3 * GH) + 1 / (9 * KH)), GH, (1 - 3 * GH / (3 * KH + GH)) / 2), | |
) | |
def _print(M): | |
for row in M: | |
for val in row: | |
print(f'{val: .6f}', end=" ") | |
print("") | |
def _C_to_S_mat(C): | |
"""Convert a stiffness matrix into a compliance tensor | |
from: https://github.com/coudertlab/elate/blob/8c789b7f249d41219a8dbe12974820387b6d5c55/elastic.py#L624 | |
""" | |
assert C.shape == (6, 6) | |
S = np.linalg.inv(C) | |
voigt_positions = [[0, 5, 4], [5, 1, 3], [4, 3, 2]] | |
def coeff(p, q): return 1. / ((1 + p // 3) * (1 + q // 3)) | |
return [ | |
[ | |
[ | |
[ | |
coeff(voigt_positions[i][j], voigt_positions[k][l]) * S[voigt_positions[i][j]][voigt_positions[k][l]] | |
for i in range(3) | |
] | |
for j in range(3) | |
] | |
for k in range(3) | |
] | |
for l in range(3) | |
] | |
def plot_elastic_3d(C, npoints=100, cmap='jet', title=None): | |
""" | |
Plot the Young's Modulus of a stiffness matrix in 3D | |
:param C: the stiffness matrix | |
:param npoints: number of sample points on the surface in u and v direction (surface will have npoints**2 points) | |
:param cmap: name of the colormap to use | |
""" | |
S_mat = _C_to_S_mat(C) | |
U, V = np.meshgrid(np.linspace(0, np.pi, npoints), np.linspace(0, 2 * np.pi, npoints)) | |
A = [np.sin(U) * np.cos(V), np.sin(U) * np.sin(V), np.cos(U)] | |
# get the Youngs Modulus in the direction (u, v) | |
R = 1 / np.array([A[i] * A[j] * A[k] * A[l] * S_mat[i][j][k][l] | |
for i in range(3) for j in range(3) for k in range(3) for l in range(3) | |
]).sum(axis=0) | |
X, Y, Z = R * A | |
fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) | |
# Color the faces according to the E-modulus from min to max: | |
min_R, max_R = np.min(R), np.max(R) | |
# If the material is isotropic, we need to handle the colorbar differently... | |
if np.isclose(max_R - min_R, 0): | |
facecolor = plt.cm.get_cmap(cmap)(np.zeros(R.shape) + 0.5) | |
normalize = plt.cm.colors.Normalize(min_R - 0.5, max_R + 0.5) | |
else: | |
facecolor = plt.cm.get_cmap(cmap)((R - min_R) / (max_R - min_R)) | |
normalize = plt.cm.colors.Normalize(min_R, max_R) | |
ax.plot_surface(X, Y, Z, rcount=npoints, ccount=npoints, facecolors=facecolor) | |
ax.set_xlim(-max_R * 1.05, max_R * 1.05) | |
ax.set_ylim(-max_R * 1.05, max_R * 1.05) | |
ax.set_zlim(-max_R * 1.05, max_R * 1.05) | |
# Generate the colorbar on our own... | |
plt.colorbar(plt.cm.ScalarMappable(normalize, plt.cm.get_cmap(cmap)), label='Youngs Modulus in GPa') | |
if title: | |
plt.title(title) | |
plt.show() | |
if __name__ == "__main__": | |
# Force matplotlib to use interactive windows. Might not be required in all cases... | |
#mpl.use('Qt5Agg') | |
table_3 = { | |
# Content of Table 3 in Book: Bone Mechanics (1989) by Stephen C. Cowin, p.102 | |
# Gives the elastic constants for Human cortical bone | |
# Values in GPa | |
'Reilly and Burstein': transiso_stiffness(11.5, 17.0, 0.58, 0.46, 3.3), # Standard machine testing | |
'Yoon and Katz': transiso_stiffness(18.8, 27.4, 0.312, 0.281, 8.71), # Ultrasonic measurement | |
'Knets et al.': ortho_stiffness(6.91, 8.51, 18.4, 4.91, 3.56, 2.41, 0.49, 0.12, 0.14), # machine | |
'Ashman et al.': ortho_stiffness(12.0, 13.4, 20.0, 6.23, 5.61, 4.53, 0.376, 0.222, 0.235), # ultrasonic | |
# Some more values for fun and profit, not contained in that table: | |
'Isotropic': iso_stiffness(12, 0.3), | |
# A stiffness tensor from a homogenization (values in MPa) | |
'Anisotropic': np.array([ | |
[505.27, 102.183, 215.497, 2.6955, 0.755812, 1.49247], | |
[102.183, 183.834, 118.513, 2.13102, -5.87697, 8.72265], | |
[215.497, 118.513, 939.81, -2.09258, 0.313404, -4.04018], | |
[2.6955, 2.13102, -2.09258, 112.866, -4.78108, -4.79793], | |
[0.755812, -5.87697, 0.313404, -4.78108, 257.989, 3.6341], | |
[1.49247, 8.72265, -4.04018, -4.79793, 3.6341, 84.2374], | |
]) / 1000, | |
# The same stiffness after orthotropization: | |
'orthotropized': ortho_stiffness(0.42243, 0.15542, 0.81241, 0.11245, 0.25739, 0.083438, 0.44541, 0.017308, 0.089041), | |
} | |
for k, C in table_3.items(): | |
print(k) | |
# Use this as an input to http://progs.coudert.name/elate | |
_print(C) | |
plot_elastic_3d(C, title=k) | |
for name, res in averages(C)._asdict().items(): | |
print(f' {name:10s}', res) | |
print("------------------------------") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
It can generate Plots like this:

and print output like this: