Last active
November 6, 2022 15:38
-
-
Save resulumit/fdf09ee63a4599e21b7a8011cade7c04 to your computer and use it in GitHub Desktop.
A app to regress and visualise, using the mtcars dataset
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(dotwhisker) | |
library(tidyverse) | |
shinyApp( | |
ui <- fluidPage( | |
sidebarLayout( | |
sidebarPanel( | |
sliderInput(inputId = "carb", label = "carb", step = 1, ticks = FALSE, | |
value = c(min(mtcars$carb, na.rm = TRUE), | |
max(mtcars$carb, na.rm = TRUE)), | |
min = min(mtcars$carb, na.rm = TRUE), | |
max = max(mtcars$carb, na.rm = TRUE)), | |
sliderInput(inputId = "cyl", label = "cyl", step = 1, ticks = FALSE, | |
value = c(min(mtcars$cyl, na.rm = TRUE), | |
max(mtcars$cyl, na.rm = TRUE)), | |
min = min(mtcars$cyl, na.rm = TRUE), | |
max = max(mtcars$cyl, na.rm = TRUE)), | |
sliderInput(inputId = "disp", label = "disp", step = 1, ticks = FALSE, | |
value = c(min(mtcars$disp, na.rm = TRUE), | |
max(mtcars$disp, na.rm = TRUE)), | |
min = min(mtcars$disp, na.rm = TRUE), | |
max = max(mtcars$disp, na.rm = TRUE)), | |
sliderInput(inputId = "drat", label = "drat", step = 1, ticks = FALSE, | |
value = c(min(mtcars$drat, na.rm = TRUE), | |
max(mtcars$drat, na.rm = TRUE)), | |
min = min(mtcars$drat, na.rm = TRUE), | |
max = max(mtcars$drat, na.rm = TRUE)), | |
sliderInput(inputId = "gear", label = "gear", step = 1, ticks = FALSE, | |
value = c(min(mtcars$gear, na.rm = TRUE), | |
max(mtcars$gear, na.rm = TRUE)), | |
min = min(mtcars$gear, na.rm = TRUE), | |
max = max(mtcars$gear, na.rm = TRUE)), | |
sliderInput(inputId = "hp", label = "hp", step = 1, ticks = FALSE, | |
value = c(min(mtcars$hp, na.rm = TRUE), | |
max(mtcars$hp, na.rm = TRUE)), | |
min = min(mtcars$hp, na.rm = TRUE), | |
max = max(mtcars$hp, na.rm = TRUE)), | |
sliderInput(inputId = "qsec", label = "qsec", step = 1, ticks = FALSE, | |
value = c(min(mtcars$qsec, na.rm = TRUE), | |
max(mtcars$qsec, na.rm = TRUE)), | |
min = min(mtcars$qsec, na.rm = TRUE), | |
max = max(mtcars$qsec, na.rm = TRUE)), | |
sliderInput(inputId = "wt", label = "wt", step = 1, ticks = FALSE, | |
value = c(min(mtcars$wt, na.rm = TRUE), | |
max(mtcars$wt, na.rm = TRUE)), | |
min = min(mtcars$wt, na.rm = TRUE), | |
max = max(mtcars$wt, na.rm = TRUE)) | |
), | |
mainPanel(plotOutput("regressionPlot")) | |
) | |
), | |
server = function(input, output) { | |
output$regressionPlot = renderPlot({ | |
# filter the dataset with input from sliders | |
df <- mtcars %>% | |
filter(carb >= input$carb[1] & carb <= input$carb[2], | |
cyl >= input$cyl[1] & cyl <= input$cyl[2], | |
disp >= input$disp[1] & disp <= input$disp[2], | |
drat >= input$drat[1] & drat <= input$drat[2], | |
gear >= input$gear[1] & gear <= input$gear[2], | |
hp >= input$hp[1] & hp <= input$hp[2], | |
qsec >= input$qsec[1] & qsec <= input$qsec[2], | |
wt >= input$wt[1] & wt <= input$wt[2] | |
) | |
# run the regression model | |
model <- lm(mpg ~ carb + cyl + disp + drat + gear + hp + qsec + wt, | |
data = df) | |
# plot the results | |
dwplot(model, dot_args = list(size = 3.2), whisker_args = list(size = 1.5)) + | |
theme_bw() + | |
theme(legend.position = "none", | |
axis.text=element_text(size = 14), | |
axis.title=element_text(size = 14)) + | |
geom_vline(xintercept = 0, colour = "grey60", linetype = 2) + | |
ggtitle("Predicting Gas Mileage") + | |
xlab("\nCoefficient") | |
}) | |
} | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment