Created
May 10, 2023 13:34
-
-
Save reverofevil/d4855c4b597a9102cfaf28e5f97de21e to your computer and use it in GitHub Desktop.
Red-black trees with deletion in Haskell
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import System.Random | |
import Data.Array.IO | |
import Control.Monad | |
data Color = R | B deriving (Eq, Show) | |
data Tree a = E | N Color (Tree a) a (Tree a) deriving (Eq, Show) | |
data Result a b = D a | T b deriving (Eq, Show) | |
sseq (D x) f = D x | |
sseq (T x) f = f x | |
fromResult (D x) = x | |
fromResult (T x) = x | |
f <$$> (D x) = D (f x) | |
f <$$> (T x) = T (f x) | |
balance (N B (N R (N R a x b) y c) z d) = T (N R (N B a x b) y (N B c z d)) | |
balance (N B (N R a x (N R b y c)) z d) = T (N R (N B a x b) y (N B c z d)) | |
balance (N B a x (N R (N R b y c) z d)) = T (N R (N B a x b) y (N B c z d)) | |
balance (N B a x (N R b y (N R c z d))) = T (N R (N B a x b) y (N B c z d)) | |
balance (N B a x b) = D (N B a x b) | |
balance (N R a x b) = T (N R a x b) | |
blacken (N _ a y b) = N B a y b | |
blacken s = s | |
insert x s = (blacken . fromResult . ins) s where | |
ins E = T (N R E x E) | |
ins (N k a y b) | |
| x < y = sseq ((\a -> N k a y b) <$$> ins a) balance | |
| x == y = D (N k a y b) | |
| x > y = sseq ((\b -> N k a y b) <$$> ins b) balance | |
balance1 (N k (N R (N R a x b) y c) z d) = D (N k (N B a x b) y (N B c z d)) | |
balance1 (N k (N R a x (N R b y c)) z d) = D (N k (N B a x b) y (N B c z d)) | |
balance1 (N k a x (N R (N R b y c) z d)) = D (N k (N B a x b) y (N B c z d)) | |
balance1 (N k a x (N R b y (N R c z d))) = D (N k (N B a x b) y (N B c z d)) | |
balance1 s = blacken1 s | |
blacken1 (N R a y b) = D (N B a y b) | |
blacken1 s = T s | |
eqL (N k a y (N B c z d)) = balance1 (N k a y (N R c z d)) | |
eqL (N k a y (N R c z d)) = (\a -> N B a z d) <$$> eqL (N R a y c) | |
eqR (N k (N B a x b) y c) = balance1 (N k (N R a x b) y c) | |
eqR (N k (N R a x b) y c) = (\b -> N B a x b) <$$> eqR (N R b y c) | |
delete x s = (fromResult . del) s where | |
del E = D E | |
del (N k a y b) | |
| x < y = sseq ((\a -> N k a y b) <$$> del a) eqL | |
| x == y = delCur (N k a y b) | |
| x > y = sseq((\b -> N k a y b) <$$> del b) eqR | |
delCur (N R a y E) = D a | |
delCur (N B a y E) = blacken1 a | |
delCur (N k a y b) = sseq ((\b -> N k a min b) <$$> b1) eqR where | |
(b1, min) = delMin b | |
delMin (N R E y b) = (D b, y) | |
delMin (N B E y b) = (blacken1 b, y) | |
delMin (N k a y b) = (sseq ((\a -> N k a y b) <$$> a1) eqL, min) where | |
(a1, min) = delMin a | |
shuffle :: [a] -> IO [a] | |
shuffle xs = do | |
ar <- newArray n xs | |
forM [1..n] $ \i -> do | |
j <- randomRIO (i,n) | |
vi <- readArray ar i | |
vj <- readArray ar j | |
writeArray ar j vi | |
return vj | |
where | |
n = length xs | |
newArray :: Int -> [a] -> IO (IOArray Int a) | |
newArray n xs = newListArray (1,n) xs | |
depth E = 0 | |
depth (N _ a _ b) = 1 + max (depth a) (depth b) | |
walk E = [] | |
walk (N _ a x b) = concat [walk a, [x], walk b] | |
test on = do | |
let adds = foldl (flip insert) E on | |
print $ depth adds | |
print $ walk adds | |
let rems = foldl (flip delete) adds [20..50] | |
print $ depth rems | |
print $ walk rems | |
main = do | |
let arr = [1..100] | |
test arr | |
rnd <- shuffle arr | |
test rnd |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Code from "Faster, Simpler Red-Black Trees" by Cameron Moy.